The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally...The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are relatively low. The ratio of Na+/K+ increases in accord with those of Cl-/F-, which indicates that ore-forming fluid of deep source participates in the mineralization. The waters of fluid inclusions have δD values from -43.5‰ to -55.4‰ of calcite. The δ18OV-SMOW values of the ore-forming fluids, calculated values, range from 17.09‰ to 18.56‰ of calcite and 17.80‰ to 23.14‰ for dolomite. δ13CV-PDB values range from -1.94‰ to -3.31‰ for calcite and -3.35‰ to 0.85‰ for the ore-bearing dolomite. These data better demonstrate that the ore-forming fluids were mainly derived from metamorphic water and magmatic hot fluid, in relation to the metamorphism of the Kunyang Group in the basement and magmatic hydrothermalism. The deposit itself might have resulted from ascending cycles of ore-forming fluid, enriched in Pb and Zn. The Huize Zn-Pb- (Ag-Ge) deposits related to carbonate-hosted Zn-Pb sulphides.展开更多
The Sinian reservior in Anpingdian (安平店)-Gaoshiti (高石梯) structure, Middle Sichuan (四川) basin, is of great importance to prospect for oil and gas. This article dissects the hydrocarbon accumulation mechan...The Sinian reservior in Anpingdian (安平店)-Gaoshiti (高石梯) structure, Middle Sichuan (四川) basin, is of great importance to prospect for oil and gas. This article dissects the hydrocarbon accumulation mechanism of this area on the basis of comprehensive methods of organic geochemistry, fluid inclusion, modeling of hydrocarbon generation and expulsion from source rocks, and by combining structure evolutions and analyzing the key geologic features of hydrocarbon origin and trap. According to the fluid inclusion homogenization temperature analysis, there exist at least three stages of fluid charging in the Sinian reservoir. From Middle-Late Jurassic to Early Cretaceous, oil cracked to gas gradually owing to high temperature at 200-220℃. The Sinian gas pool was mainly formed at the stage when natural gas in trap was released from water and paleo-gas pools were being adjusted. It was a process in which natural gas dissipated, transferred, and redistributed, and which resulted in the present remnant gas pool in Anpindian-Gaositi tectonic belt. The authors resumed such an evolution process of Sinian reservoir as from paleo-oil pools to paleo-gas pools, and till today's adjusted and reconstructed gas pools.展开更多
基金the Funds for Fostering Young Pioneers of Yunnan Province(Natural Science Foundation of Yunnan Province)(99D0003G)the National State Climbing Plan(95-Yu-39)+2 种基金the Collaboration Program sponsored by the colleges and universities of Yunnan Province(2000YK-04)the National Natural Science Foundation of China(No.40172038) the Rescarch Project of the Huize Pb-Zn Mine(2000-02).
文摘The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone. Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10 um) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-Cl--F--SO42- type, are characterized by temperatures of 164-221℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410×105 to 661×105 Pa. The contents of Na+-K+ and C1--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and Cl-/F- (18.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are relatively low. The ratio of Na+/K+ increases in accord with those of Cl-/F-, which indicates that ore-forming fluid of deep source participates in the mineralization. The waters of fluid inclusions have δD values from -43.5‰ to -55.4‰ of calcite. The δ18OV-SMOW values of the ore-forming fluids, calculated values, range from 17.09‰ to 18.56‰ of calcite and 17.80‰ to 23.14‰ for dolomite. δ13CV-PDB values range from -1.94‰ to -3.31‰ for calcite and -3.35‰ to 0.85‰ for the ore-bearing dolomite. These data better demonstrate that the ore-forming fluids were mainly derived from metamorphic water and magmatic hot fluid, in relation to the metamorphism of the Kunyang Group in the basement and magmatic hydrothermalism. The deposit itself might have resulted from ascending cycles of ore-forming fluid, enriched in Pb and Zn. The Huize Zn-Pb- (Ag-Ge) deposits related to carbonate-hosted Zn-Pb sulphides.
基金supported by the National Basic Research Pro-gram of China (No. 2005CB422106)SINOPEC Forward Looking Project (PH08001)
文摘The Sinian reservior in Anpingdian (安平店)-Gaoshiti (高石梯) structure, Middle Sichuan (四川) basin, is of great importance to prospect for oil and gas. This article dissects the hydrocarbon accumulation mechanism of this area on the basis of comprehensive methods of organic geochemistry, fluid inclusion, modeling of hydrocarbon generation and expulsion from source rocks, and by combining structure evolutions and analyzing the key geologic features of hydrocarbon origin and trap. According to the fluid inclusion homogenization temperature analysis, there exist at least three stages of fluid charging in the Sinian reservoir. From Middle-Late Jurassic to Early Cretaceous, oil cracked to gas gradually owing to high temperature at 200-220℃. The Sinian gas pool was mainly formed at the stage when natural gas in trap was released from water and paleo-gas pools were being adjusted. It was a process in which natural gas dissipated, transferred, and redistributed, and which resulted in the present remnant gas pool in Anpindian-Gaositi tectonic belt. The authors resumed such an evolution process of Sinian reservoir as from paleo-oil pools to paleo-gas pools, and till today's adjusted and reconstructed gas pools.