Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodeg...Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodegradable nature of Mg,appreciable biocompatibility of elemental Mg,and its close resemblance to natural bone in terms of density and elastic modulus make them highly preferable option amongst other available alternatives in this field.This review article presents an overview covering the recent advancements made in the field of Mg-based biodegradable implants for orthopaedic implant applications.The paper focuses on alloy development and fabrication techniques,the state of the art of important Mg-based alloy systems in terms of their mechanical properties,in-vitro and in-vivo degradation behaviour and cytotoxicity.Further,the paper reviews the current progress achieved in the clinical transition of Mg-based alloys for orthopaedic fixtures.The review also includes the degradation mechanisms of the alloys in physiological environment and highlights the mismatch existing between the rate of bone healing and alloy degradation due to rapid corrosion of the alloys in such environment,which has still restricted their widespread application.Finally,the surface coating techniques available for the alloys as an effective way to reduce the degradation rate are reviewed,followed by a discussion on the future research prospects.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
文摘Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodegradable nature of Mg,appreciable biocompatibility of elemental Mg,and its close resemblance to natural bone in terms of density and elastic modulus make them highly preferable option amongst other available alternatives in this field.This review article presents an overview covering the recent advancements made in the field of Mg-based biodegradable implants for orthopaedic implant applications.The paper focuses on alloy development and fabrication techniques,the state of the art of important Mg-based alloy systems in terms of their mechanical properties,in-vitro and in-vivo degradation behaviour and cytotoxicity.Further,the paper reviews the current progress achieved in the clinical transition of Mg-based alloys for orthopaedic fixtures.The review also includes the degradation mechanisms of the alloys in physiological environment and highlights the mismatch existing between the rate of bone healing and alloy degradation due to rapid corrosion of the alloys in such environment,which has still restricted their widespread application.Finally,the surface coating techniques available for the alloys as an effective way to reduce the degradation rate are reviewed,followed by a discussion on the future research prospects.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.