For a coupled slow-fast FitzHugh-Nagumo(FHN)equation derived from a reaction-diffusionmechanics(RDM)model,Holzer et al.(2013)studied the existence and stability of the travelling pulse,which consists of two fast orbit...For a coupled slow-fast FitzHugh-Nagumo(FHN)equation derived from a reaction-diffusionmechanics(RDM)model,Holzer et al.(2013)studied the existence and stability of the travelling pulse,which consists of two fast orbit arcs and two slow ones,where one fast segment passes the unique fold point with algebraic decreasing and two slow ones follow normally hyperbolic critical curve segments.Shen and Zhang(2021)obtained the existence of the travelling pulse,whose two fast orbit arcs both exponentially decrease,and one of the slow orbit arcs could be normally hyperbolic or not at the origin.Here,we characterize both the nonlinear and spectral stability of this travelling pulse.展开更多
In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special param...In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of .展开更多
The main objective of this article is to obtain the new analytical and numerical solutions of fractional Fitzhugh-Nagumo equation which arises as a model of reaction-ifusion systems,transmission of nerve impulses,circ...The main objective of this article is to obtain the new analytical and numerical solutions of fractional Fitzhugh-Nagumo equation which arises as a model of reaction-ifusion systems,transmission of nerve impulses,circuit theory,biology and the area of population genetics.For this aim conformable derivative with fractional order which is a well behaved,understandable and applicable definition is used as a tool.The analytical solutions were got by utilizing the fact that the conformable fractional derivative provided the chain rule.By the help of this feature which is not provided by other popular fractional derivatives,nonlinear fractional partial differential equation is turned into an integer order differential equation.The numerical solutions which is obtained with the aid of residual power series method are compared with the analytical results that obtained by performing sub equation method.This comparison is made both with the help of three-dimensional graphical representations and tables for different values of theγ.展开更多
基金supported by National Key R&D Program of China(Grant No.2022YFA1005900)National Natural Science Foundation of China(Grant Nos.12071284 and 12161131001)+1 种基金supported by National Natural Science Foundation of China(Grant No.11871334)Innovation Program of Shanghai Municipal Education Commission(Grant No.2021-01-07-00-02-E00087)。
文摘For a coupled slow-fast FitzHugh-Nagumo(FHN)equation derived from a reaction-diffusionmechanics(RDM)model,Holzer et al.(2013)studied the existence and stability of the travelling pulse,which consists of two fast orbit arcs and two slow ones,where one fast segment passes the unique fold point with algebraic decreasing and two slow ones follow normally hyperbolic critical curve segments.Shen and Zhang(2021)obtained the existence of the travelling pulse,whose two fast orbit arcs both exponentially decrease,and one of the slow orbit arcs could be normally hyperbolic or not at the origin.Here,we characterize both the nonlinear and spectral stability of this travelling pulse.
文摘In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of .
基金The present investigation was supported by the Scientic Research Fund of Guangdong Provincial Educa-tion Department under Grant LYM08101 of People’s Republic of China
文摘The main objective of this article is to obtain the new analytical and numerical solutions of fractional Fitzhugh-Nagumo equation which arises as a model of reaction-ifusion systems,transmission of nerve impulses,circuit theory,biology and the area of population genetics.For this aim conformable derivative with fractional order which is a well behaved,understandable and applicable definition is used as a tool.The analytical solutions were got by utilizing the fact that the conformable fractional derivative provided the chain rule.By the help of this feature which is not provided by other popular fractional derivatives,nonlinear fractional partial differential equation is turned into an integer order differential equation.The numerical solutions which is obtained with the aid of residual power series method are compared with the analytical results that obtained by performing sub equation method.This comparison is made both with the help of three-dimensional graphical representations and tables for different values of theγ.