To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure paramet...To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.展开更多
From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fie...From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50274203)National High Technology Research and Development Program of China(2001AA337040)
文摘To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19874020)the Natural Science Foundation of Hunan Province of China (Grant Nos. 09JJ3012 and 10JJ9002)the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 10A032)
文摘From the viewpoint of quantum information, this paper studies preparation and control of atomic optimal entropy squeezing states (AOESS) for a moving two-level atom under control of the two-mode squeezing vacuum fields. Necessary conditions of preparation of the AOESS are analysed, and numerical verification of the AOESS is finished. It shows that the AOESS can be prepared by controlling the time of the atom interaction with the field, cutting the entanglement between the atom and field, and adjusting squeezing factor of the field. An atomic optimal entropy squeezing sudden generation in different components can alternately be realized by controlling the field-mode structure parameter.