The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal the...The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal theories of high-T<sub>c</sub> superconductors, thereby applying the finding that the optimum hole concentration of σ<sub>o</sub> = 0.229 can be linked with the universal fractal constant δ<sub>1</sub> = 8.72109… of the renormalized quadratic Hénon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. However, also conventional BCS superconductors can be scaled with δ<sub>1</sub>, exemplified through the energy gap relation k<sub>B</sub>T<sub>c</sub> ≈ 5Δ<sub>0</sub>/δ<sub>1</sub>, suggesting a revision of the entire theory of superconductivity. A low mean cationic charge allows the development of a frustrated nano-sized fractal structure of possibly ferroelastic nature delivering nano-channels for very fast charge transport, in common for both high-T<sub>c</sub> superconductor and organic-inorganic halide perovskite solar materials. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of “bulk” CuO1﹣x samples. In addition, cesium substitution in the Tl-1223 compound is an option.展开更多
The Advanced Encryption Standard(AES)is the most widely used symmetric cipher today.AES has an important place in cryptology.Finite field,also known as Galois Fields,are cornerstones for understanding any cryptography...The Advanced Encryption Standard(AES)is the most widely used symmetric cipher today.AES has an important place in cryptology.Finite field,also known as Galois Fields,are cornerstones for understanding any cryptography.This encryption method on AES is a method that uses polynomials on Galois fields.In this paper,we generalize the AES-like cryptology on 2×2 matrices.We redefine the elements of k-order Fibonacci polynomials sequences using a certain irreducible polynomial in our cryptology algorithm.So,this cryptology algorithm is called AES-like cryptology on the k-order Fibonacci polynomial matrix.展开更多
Synchronicity involves the experience of personal meaning entangled with ambiguous coincidences in time. Ambiguity results from incomplete information about the chances of various events occurring. The problem that th...Synchronicity involves the experience of personal meaning entangled with ambiguous coincidences in time. Ambiguity results from incomplete information about the chances of various events occurring. The problem that this study addresses is the lack of empirical research on synchronicity. This study sought to address this problem by exploring the astrological hypothesis that planetary transits predict synchronicity events. Synchronicities were compared with the probability distributions of planetary transits. In comparison with the base rate prediction, planetary transits were not a significant predictor of synchronicity events. The findings of this study provide new insight into the complex, multifaceted, and ambiguous phenomenon of synchronicity. The concept of ambiguity tolerance plays a significant role in synchronicity research since ambiguity cannot be completely eliminated.展开更多
文摘The empirical relation of between the transition temperature of optimum doped superconductors T<sub>co</sub> and the mean cationic charge , a physical paradox, can be recast to strongly support fractal theories of high-T<sub>c</sub> superconductors, thereby applying the finding that the optimum hole concentration of σ<sub>o</sub> = 0.229 can be linked with the universal fractal constant δ<sub>1</sub> = 8.72109… of the renormalized quadratic Hénon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. However, also conventional BCS superconductors can be scaled with δ<sub>1</sub>, exemplified through the energy gap relation k<sub>B</sub>T<sub>c</sub> ≈ 5Δ<sub>0</sub>/δ<sub>1</sub>, suggesting a revision of the entire theory of superconductivity. A low mean cationic charge allows the development of a frustrated nano-sized fractal structure of possibly ferroelastic nature delivering nano-channels for very fast charge transport, in common for both high-T<sub>c</sub> superconductor and organic-inorganic halide perovskite solar materials. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of “bulk” CuO1﹣x samples. In addition, cesium substitution in the Tl-1223 compound is an option.
基金This work is supported by the Scientific Research Project(BAP)2020FEBE009,Pamukkale University,Denizli,Turkey.
文摘The Advanced Encryption Standard(AES)is the most widely used symmetric cipher today.AES has an important place in cryptology.Finite field,also known as Galois Fields,are cornerstones for understanding any cryptography.This encryption method on AES is a method that uses polynomials on Galois fields.In this paper,we generalize the AES-like cryptology on 2×2 matrices.We redefine the elements of k-order Fibonacci polynomials sequences using a certain irreducible polynomial in our cryptology algorithm.So,this cryptology algorithm is called AES-like cryptology on the k-order Fibonacci polynomial matrix.
文摘Synchronicity involves the experience of personal meaning entangled with ambiguous coincidences in time. Ambiguity results from incomplete information about the chances of various events occurring. The problem that this study addresses is the lack of empirical research on synchronicity. This study sought to address this problem by exploring the astrological hypothesis that planetary transits predict synchronicity events. Synchronicities were compared with the probability distributions of planetary transits. In comparison with the base rate prediction, planetary transits were not a significant predictor of synchronicity events. The findings of this study provide new insight into the complex, multifaceted, and ambiguous phenomenon of synchronicity. The concept of ambiguity tolerance plays a significant role in synchronicity research since ambiguity cannot be completely eliminated.