Quantum field theory creates fermions via abstract operators exciting abstract fields, with a specific field for each type of specific particle. This operator algebra lends itself well to quantum statistics, neverthel...Quantum field theory creates fermions via abstract operators exciting abstract fields, with a specific field for each type of specific particle. This operator algebra lends itself well to quantum statistics, nevertheless, our physical understanding of this process is nonintuitive at best. In this paper we analyze the creation of fermions from primordial gauge field quantum gravity loops in the context of Calabi-Yau manifold theory. I extend a prior mass-gap treatment based on Yang-Mills gauge theory of higher order self-interaction to include the half-integral spin of fermions.展开更多
Math and physics proceed from assumptions to conclusions via a logical path. Artificial intelligence possesses the ability to follow logic, herein specifically applied to the problem of defining ontologically real 2D ...Math and physics proceed from assumptions to conclusions via a logical path. Artificial intelligence possesses the ability to follow logic, herein specifically applied to the problem of defining ontologically real 2D manifolds in a 3D continuum. Vortices and tori in fluids exhibit effective 2D surfaces, which, treated as manifolds, allow application of calculus on the boundaries of the structures. Recent papers in primordial field theory (PFT) have employed Calabi-Yau geometry and topology to develop a fermion structure. We desire a logical justification of this application and herein explore the use of artificial intelligence to assist in logic verification. A proof is outlined by the author and formalized by the AI.展开更多
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix...Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.展开更多
The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field th...The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.展开更多
The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in th...The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in the theory. A duality transformation is studied for the Chern-Simons example. The idea that is used has been employed to describe duality in a scalar theory. The link between the edge theory with the Chern-Simons theory in the bulk then suggests that similar transformations can be implemented in the bulk Chern-Simons theory as well.展开更多
A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other fi...A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other field exists, contrasting with the Standard Model of Particle Physics in which each elementary particle is an excitation in its own quantum field. The primordial field theory of quantum gravity has produced a model of a fermion with a mass gap, ½-integral spin, discrete charge, and magnetic moment. The mass gap is based on an existence theorem that is anchored in Yang-Mills, while Calabi-Yau anchors ½-integral spin, with charge and magnetic moment based on duality. Based on N-windings, this work is here extended to encompass fractional charge, with the result applied to quarks, yielding fermion mass and charge in agreement with experiment and novel size correlations and a unique quantum gravity-based ontological understanding of quarks.展开更多
The world energy challenge and global warming are two fundamental problems of current interest. What has not been recognized, however, is that the two problems are causally related. We present here the formal theory o...The world energy challenge and global warming are two fundamental problems of current interest. What has not been recognized, however, is that the two problems are causally related. We present here the formal theory of fusion, the well known but yet unrealized solution of the energy challenge, and show that its occurrence on earth is responsible for global warming. Consequently, like all the known energy resources, the solution of both problems is merely a technological problem, since the science is now known.展开更多
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-pteserved gapless edge/surface states, adiabatically distinct from conventional mat erials. By proxim...Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-pteserved gapless edge/surface states, adiabatically distinct from conventional mat erials. By proximity to various magnets and superconductors, to pological insula tors show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum compu tat ion. Effects in the former such as the spin to rques, spin-charge conversion, to pological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing to pological quantum comp ut at ion. Various signa tu res of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.展开更多
The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals f...The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (^1S0←→^3P0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU(N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large-N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.展开更多
In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to c...In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to construct their pressure phase diagrams and to study the close relationship between superconductivity(SC) and other electronic instabilities, such as antiferromagnetism(AFM), ferromagnetism(FM), and valence transitions. Field-angle dependent heat capacity and point-contact spectroscopic measurements under pressure are taken as examples to illustrate their ability to investigate novel physical properties of the emergent electronic states.展开更多
We show that the Dirac equation is separated into four differential equations for time-periodic Majorana fermions in Kerr-Newman and Kerr-Newman-(A)dS spacetimes.Although they cannot be transformed into radial and ang...We show that the Dirac equation is separated into four differential equations for time-periodic Majorana fermions in Kerr-Newman and Kerr-Newman-(A)dS spacetimes.Although they cannot be transformed into radial and angular equations,the four differential equations yield two algebraic identities.When the electric or magnetic charge is nonzero,they conclude that there is no differentiable time-periodic Majorana fermions outside the event horizon in Kerr-Newman and Kerr-Newman-AdS spacetimes,or between the event horizon and the cosmological horizon in Kerr-Newman-dS spacetime.展开更多
We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility,specific heat and electrical resistivity measurements as well as hig...We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility,specific heat and electrical resistivity measurements as well as high pressure effect.Magnetic measurements reveal that an antiferromagnetic order develops below T_(m)~10.4 K with magnetic moments orientated in the ab plane.The enhanced electronic specific heat coefficient and the negative logarithmic slope in the resistivity of CeGaSi indicate that the title compound belongs to the family of Kondo system with heavy fermion ground states.The max magnetic entropy change-ΔS_(M)^(max)(μ_(0)H⊥c,μ_(0)H=7 T) around T_(m) is found to reach up to 11.85 J·kg^(-1)·K^(-1).Remarkably,both the antiferromagnetic transition temperature and-ln T behavior increase monotonically with pressure applied to 20 kbar(1 bar=10~5 Pa),indicating that much higher pressure will be needed to reach its quantum critical point.展开更多
We present a lattice QCD determination of masses of the conjectured H-dibaryon,denoted as mH,at nine different temperatures:T/T_(c)=0.24,0.63,0.76,0.84,0.95,1.09,1.27,1.52,and 1.90.The masses of baryons N,Σ,Ξ,andΛa...We present a lattice QCD determination of masses of the conjectured H-dibaryon,denoted as mH,at nine different temperatures:T/T_(c)=0.24,0.63,0.76,0.84,0.95,1.09,1.27,1.52,and 1.90.The masses of baryons N,Σ,Ξ,andΛat different temperatures were also computed.The simulations were performed on an anisotropic lattice with N_(f)=2+1 flavours of clover fermion at a quark mass corresponding to mπ=384(4)MeV.The thermal ensembles were provided by the FASTSUM collaboration,whereas the zero temperature ensembles were provided by the Hadspec collaboration.We also calculated the spectral density of the correlation function of those particles.The spectral density distributions show a rich peak structure at the lowest temperature;at intermediate temperatures,the mass values of those particles obtained by the extrapolation method reflect a two-peak structure.While the spectral density for the octet baryon becomes smooth at T/T_(c)=1.27,1.52,and 1.90,the spectral density for the H-dibaryon becomes smooth at T/T_(c)=1.90.At T/T_(c)=0.24,the mass difference of the H-dibaryon andΛpair,expressed asΔm=m_(H)−2m_(Λ),was estimated to beΔm=−14.6(6.2)MeV,which suggests the existence of a bound H-dibaryon state.展开更多
In this study,we conducted a search for dark matter using a part of the data recorded by the CMS experiment during run-I of the LHC in 2012 with a center of mass energy of 8 TeV and an integrated luminosity of 11.6 fb...In this study,we conducted a search for dark matter using a part of the data recorded by the CMS experiment during run-I of the LHC in 2012 with a center of mass energy of 8 TeV and an integrated luminosity of 11.6 fb−1.These data were gathered from the CMS open data.Dark matter,in the framework of the simplified model(mono-Z′),can be produced from proton-proton collisions in association with a new hypothetical gauge boson,Z′.Thus,the search was conducted in the dimuon plus large missing transverse momentum channel.One benchmark scenario of mono-Z′,which is known as light vector,was used for interpreting the CMS open data.No evidence of dark matter was observed,and exclusion limits were set on the masses of dark matter and Z′at 95%confidence level.展开更多
The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneli...The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneling and interdot tunneling in a non-Hermitian double quantum dots system. It is found that in the weak-coupling regime the Majorana tunneling has pronounced effects on the transport properties of such a system, manifested as splitting of the single peak into three and a reduced 1/4 peak in the transmission function. In the presence of the PT-symmetric complex potentials and interdot tunneling, the 1/4 central peak is robust against them, while the two side peaks are tuned by them. The interdot tunneling only induces asymmetry, instead of moving the conductance peak, due to the robustness of the Majorana modes. There is an exceptional point induced by the union of Majorana tunneling and interdot tunneling. With increased PT-symmetric complex potentials, the two side peaks will move towards each other. When the exceptional point is passed through, these two side peaks will disappear. In the strong-coupling regime, the Majorana fermion induces a 1/4 conductance dip instead of the three-peak structure. PT-symmetric complex potentials induce two conductance dips pinned at the exceptional point. These effects should be accessible in experiments.展开更多
Dynamical chiral symmetry breaking(DCSB) in thermal QED3 with fermion velocity is studied in the framework of Dyson–Schwinger equations. By adopting instantaneous approximation and neglecting the transverse component...Dynamical chiral symmetry breaking(DCSB) in thermal QED3 with fermion velocity is studied in the framework of Dyson–Schwinger equations. By adopting instantaneous approximation and neglecting the transverse component of gauge boson propagator at finite temperature, we numerically solve the fermion self-energy equation in the rainbow approximation. It is found that both DCSB and fermion chiral condensate are suppressed by fermion velocity.Moreover, the critical temperature decreases as fermion velocity increases.展开更多
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new sym...The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P^1,5 as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.展开更多
文摘Quantum field theory creates fermions via abstract operators exciting abstract fields, with a specific field for each type of specific particle. This operator algebra lends itself well to quantum statistics, nevertheless, our physical understanding of this process is nonintuitive at best. In this paper we analyze the creation of fermions from primordial gauge field quantum gravity loops in the context of Calabi-Yau manifold theory. I extend a prior mass-gap treatment based on Yang-Mills gauge theory of higher order self-interaction to include the half-integral spin of fermions.
文摘Math and physics proceed from assumptions to conclusions via a logical path. Artificial intelligence possesses the ability to follow logic, herein specifically applied to the problem of defining ontologically real 2D manifolds in a 3D continuum. Vortices and tori in fluids exhibit effective 2D surfaces, which, treated as manifolds, allow application of calculus on the boundaries of the structures. Recent papers in primordial field theory (PFT) have employed Calabi-Yau geometry and topology to develop a fermion structure. We desire a logical justification of this application and herein explore the use of artificial intelligence to assist in logic verification. A proof is outlined by the author and formalized by the AI.
文摘Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.
文摘The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.
文摘The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in the theory. A duality transformation is studied for the Chern-Simons example. The idea that is used has been employed to describe duality in a scalar theory. The link between the edge theory with the Chern-Simons theory in the bulk then suggests that similar transformations can be implemented in the bulk Chern-Simons theory as well.
文摘A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other field exists, contrasting with the Standard Model of Particle Physics in which each elementary particle is an excitation in its own quantum field. The primordial field theory of quantum gravity has produced a model of a fermion with a mass gap, ½-integral spin, discrete charge, and magnetic moment. The mass gap is based on an existence theorem that is anchored in Yang-Mills, while Calabi-Yau anchors ½-integral spin, with charge and magnetic moment based on duality. Based on N-windings, this work is here extended to encompass fractional charge, with the result applied to quarks, yielding fermion mass and charge in agreement with experiment and novel size correlations and a unique quantum gravity-based ontological understanding of quarks.
文摘The world energy challenge and global warming are two fundamental problems of current interest. What has not been recognized, however, is that the two problems are causally related. We present here the formal theory of fusion, the well known but yet unrealized solution of the energy challenge, and show that its occurrence on earth is responsible for global warming. Consequently, like all the known energy resources, the solution of both problems is merely a technological problem, since the science is now known.
基金the supports from the National Natural Science Foundation of China (Grant No.11874070)the National Key R&D Program of China (Grant No.2018YFA0305601)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB28000000)National Thousand-Young-Talents Program in China (Grant No.8206100161).
文摘Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-pteserved gapless edge/surface states, adiabatically distinct from conventional mat erials. By proximity to various magnets and superconductors, to pological insula tors show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum compu tat ion. Effects in the former such as the spin to rques, spin-charge conversion, to pological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing to pological quantum comp ut at ion. Various signa tu res of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.
基金Acknowledgements We thank Congjun Wu for helpful discussion on SU(N) physics, and Ren Zhang for discussions about orbital Feshbach Resonance. This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11325417, 11674139, and 11504061, the China Postdoctoral Science Foundation, and the Foundation of LCP.
文摘The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (^1S0←→^3P0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU(N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large-N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00103)the National Natural Science Foundation of China(Grant Nos.11174245 and 11374257)+1 种基金the Science Challenge Program of Chinathe Fundamental Research Funds for the Central Universities of China
文摘In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to construct their pressure phase diagrams and to study the close relationship between superconductivity(SC) and other electronic instabilities, such as antiferromagnetism(AFM), ferromagnetism(FM), and valence transitions. Field-angle dependent heat capacity and point-contact spectroscopic measurements under pressure are taken as examples to illustrate their ability to investigate novel physical properties of the emergent electronic states.
基金Supported by the National Natural Science Foundation of China (12326602)。
文摘We show that the Dirac equation is separated into four differential equations for time-periodic Majorana fermions in Kerr-Newman and Kerr-Newman-(A)dS spacetimes.Although they cannot be transformed into radial and angular equations,the four differential equations yield two algebraic identities.When the electric or magnetic charge is nonzero,they conclude that there is no differentiable time-periodic Majorana fermions outside the event horizon in Kerr-Newman and Kerr-Newman-AdS spacetimes,or between the event horizon and the cosmological horizon in Kerr-Newman-dS spacetime.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12274440)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33010100)+1 种基金the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903)the Fund of the Synergetic Extreme Condition User Facility (SECUF)。
文摘We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility,specific heat and electrical resistivity measurements as well as high pressure effect.Magnetic measurements reveal that an antiferromagnetic order develops below T_(m)~10.4 K with magnetic moments orientated in the ab plane.The enhanced electronic specific heat coefficient and the negative logarithmic slope in the resistivity of CeGaSi indicate that the title compound belongs to the family of Kondo system with heavy fermion ground states.The max magnetic entropy change-ΔS_(M)^(max)(μ_(0)H⊥c,μ_(0)H=7 T) around T_(m) is found to reach up to 11.85 J·kg^(-1)·K^(-1).Remarkably,both the antiferromagnetic transition temperature and-ln T behavior increase monotonically with pressure applied to 20 kbar(1 bar=10~5 Pa),indicating that much higher pressure will be needed to reach its quantum critical point.
基金Supported by the National Natural Science Foundation of China(NSFC)(11347029)。
文摘We present a lattice QCD determination of masses of the conjectured H-dibaryon,denoted as mH,at nine different temperatures:T/T_(c)=0.24,0.63,0.76,0.84,0.95,1.09,1.27,1.52,and 1.90.The masses of baryons N,Σ,Ξ,andΛat different temperatures were also computed.The simulations were performed on an anisotropic lattice with N_(f)=2+1 flavours of clover fermion at a quark mass corresponding to mπ=384(4)MeV.The thermal ensembles were provided by the FASTSUM collaboration,whereas the zero temperature ensembles were provided by the Hadspec collaboration.We also calculated the spectral density of the correlation function of those particles.The spectral density distributions show a rich peak structure at the lowest temperature;at intermediate temperatures,the mass values of those particles obtained by the extrapolation method reflect a two-peak structure.While the spectral density for the octet baryon becomes smooth at T/T_(c)=1.27,1.52,and 1.90,the spectral density for the H-dibaryon becomes smooth at T/T_(c)=1.90.At T/T_(c)=0.24,the mass difference of the H-dibaryon andΛpair,expressed asΔm=m_(H)−2m_(Λ),was estimated to beΔm=−14.6(6.2)MeV,which suggests the existence of a bound H-dibaryon state.
基金the Center for Theoretical Physics (CTP) at the British University in Egypt (BUE) for its continuous support,both financially and scientifically,for this work。
文摘In this study,we conducted a search for dark matter using a part of the data recorded by the CMS experiment during run-I of the LHC in 2012 with a center of mass energy of 8 TeV and an integrated luminosity of 11.6 fb−1.These data were gathered from the CMS open data.Dark matter,in the framework of the simplified model(mono-Z′),can be produced from proton-proton collisions in association with a new hypothetical gauge boson,Z′.Thus,the search was conducted in the dimuon plus large missing transverse momentum channel.One benchmark scenario of mono-Z′,which is known as light vector,was used for interpreting the CMS open data.No evidence of dark matter was observed,and exclusion limits were set on the masses of dark matter and Z′at 95%confidence level.
基金Project supported by the National Natural Science Foundation of China (Grant No.11834005)。
文摘The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneling and interdot tunneling in a non-Hermitian double quantum dots system. It is found that in the weak-coupling regime the Majorana tunneling has pronounced effects on the transport properties of such a system, manifested as splitting of the single peak into three and a reduced 1/4 peak in the transmission function. In the presence of the PT-symmetric complex potentials and interdot tunneling, the 1/4 central peak is robust against them, while the two side peaks are tuned by them. The interdot tunneling only induces asymmetry, instead of moving the conductance peak, due to the robustness of the Majorana modes. There is an exceptional point induced by the union of Majorana tunneling and interdot tunneling. With increased PT-symmetric complex potentials, the two side peaks will move towards each other. When the exceptional point is passed through, these two side peaks will disappear. In the strong-coupling regime, the Majorana fermion induces a 1/4 conductance dip instead of the three-peak structure. PT-symmetric complex potentials induce two conductance dips pinned at the exceptional point. These effects should be accessible in experiments.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11535005the Natural Science Foundation of Jiangsu Province under Grant No.BK20130387
文摘Dynamical chiral symmetry breaking(DCSB) in thermal QED3 with fermion velocity is studied in the framework of Dyson–Schwinger equations. By adopting instantaneous approximation and neglecting the transverse component of gauge boson propagator at finite temperature, we numerically solve the fermion self-energy equation in the rainbow approximation. It is found that both DCSB and fermion chiral condensate are suppressed by fermion velocity.Moreover, the critical temperature decreases as fermion velocity increases.
基金Supported by National Science Foundation of China(NSFC)(11690022,11475237,11121064)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB23030100)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P^1,5 as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.