The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The ef...The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.展开更多
The α-Fe_2 O_3@SiO_2 reddish pigments with core-shell structure were successfully prepared by hydrothermal and Stober methods. The structure, morphology, and chromaticity of the synthesized pigments were characterize...The α-Fe_2 O_3@SiO_2 reddish pigments with core-shell structure were successfully prepared by hydrothermal and Stober methods. The structure, morphology, and chromaticity of the synthesized pigments were characterized by XRD, SEM, TEM, FTIR, XPS, and colorimetry. The results indicated that the as-prepared pigments have the characteristics of narrow particle size distribution, high dispersion,and good sphericity. The α-Fe_2 O_3@SiO_2 reddish pigments were uniform and well dispersed in solution. In addition, the pigments with different shell thickness were also prepared, and the effect of shell thickness on the color performance of the pigments was discussed.展开更多
基金Project(2013DFA51290)supported by International S&T Cooperation Program of China
文摘The purpose of this study is to explore the adsorption performance of meso-2,3-dimercaptosuccinic acid(DMSA)modified Fe3O4@SiO2 magnetic nanocomposite(Fe3O4@SiO2@DMSA)for Pb2+ions removal from aqueous solutions.The effects of solution pH,initial concentration of Pb2+ions,contact time,and temperature on the amount of Pb2+adsorbed were investigated.Adsorption isotherms,adsorption kinetics,and thermodynamic analysis were also studied.The results showed that the maximum adsorption capacity of the Fe3O4@SiO2@DMSA composite is 50.5 mg/g at 298 K,which is higher than that of Fe3O4 and Fe3O4@SiO2 magnetic nanoparticles.The adsorption process agreed well with Langmuir adsorption isotherm models and pseudo second-order kinetics.The thermodynamic analysis revealed that the adsorption was spontaneous,endothermic and energetically driven in nature.
基金financially supported by the Initiative Scientific Research Program from Jingdezheng Ceramic Institute and SRT Program (No. 1721T0264) from Tsinghua University
文摘The α-Fe_2 O_3@SiO_2 reddish pigments with core-shell structure were successfully prepared by hydrothermal and Stober methods. The structure, morphology, and chromaticity of the synthesized pigments were characterized by XRD, SEM, TEM, FTIR, XPS, and colorimetry. The results indicated that the as-prepared pigments have the characteristics of narrow particle size distribution, high dispersion,and good sphericity. The α-Fe_2 O_3@SiO_2 reddish pigments were uniform and well dispersed in solution. In addition, the pigments with different shell thickness were also prepared, and the effect of shell thickness on the color performance of the pigments was discussed.