为揭示桑树Morus alba L.对缺铁环境的响应机制,对桑树幼苗在缺铁环境下对难溶性铁的吸收、根系的铁还原活性、活性还原物质的分泌及根际的酸化作用进行了探讨。缺铁培养12 d后,桑树地上部铁含量和叶片叶绿素含量显著降低而叶片丙二醛...为揭示桑树Morus alba L.对缺铁环境的响应机制,对桑树幼苗在缺铁环境下对难溶性铁的吸收、根系的铁还原活性、活性还原物质的分泌及根际的酸化作用进行了探讨。缺铁培养12 d后,桑树地上部铁含量和叶片叶绿素含量显著降低而叶片丙二醛含量显著增加。缺铁植株可吸收利用难溶性Fe2O3。在缺铁环境下可观察到根际的明显酸化,培养液的pH也随着缺铁处理时间的延长(1、3、4、5、6、7 d)而降低。而且,缺铁处理显著提高根系铁还原酶活性而显著降低根际Eh值。缺铁处理6、7 d后株均活性还原性物质的分泌量为(20.37±0.73)、(37.49±0.30)μmol·d-1,显著高于加铁处理的株均分泌量[(11.89±0.46)、(12.32±0.30)μmol·d-1]。此外,在缺铁环境中植株根冠比(0.25±0.06)也显著高于加铁处理(0.14±0.02)。这些结果说明,缺铁诱导的根际酸化、根系还原作用、还原物的分泌及根系的生长可能是桑树幼苗吸收利用难溶性铁的生理响应机制。展开更多
Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and ...Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and genotypes to overcome Fe_deficiency chlorosis. Thus, enhancing PS release is a critical step to improve Fe nutrition of plants grown on Fe stressed soils. The heterosis of PS release rate in common wheat was studied by analyzing PS release from roots of three hybrids and their four parents grown in Fe_deficiency nutrient solution under controlled environmental conditions. PS release rates were determined at two or three day intervals after onset of Fe_deficiency symptoms by the measurement of Fe mobilizing capacity of root exudates from freshly precipitated FeⅢ hydroxide. High amounts of phytosiderophores were released from the roots of all wheat genotypes under Fe_deficiency, and the amount progressively increased with the development of Fe_deficiency chlorosis. The results revealed that the hybrids had more sensitive feedback systems which secreted more phytosiderophores under Fe_deficiency than their parents. By analyzing the relationship between each hybrid and its parents, it was also found that the parents should be selected on the basis of the rate of PS release and the combining ability by using the heterosis to improve Fe utilizability of crop plants.展开更多
文摘Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and genotypes to overcome Fe_deficiency chlorosis. Thus, enhancing PS release is a critical step to improve Fe nutrition of plants grown on Fe stressed soils. The heterosis of PS release rate in common wheat was studied by analyzing PS release from roots of three hybrids and their four parents grown in Fe_deficiency nutrient solution under controlled environmental conditions. PS release rates were determined at two or three day intervals after onset of Fe_deficiency symptoms by the measurement of Fe mobilizing capacity of root exudates from freshly precipitated FeⅢ hydroxide. High amounts of phytosiderophores were released from the roots of all wheat genotypes under Fe_deficiency, and the amount progressively increased with the development of Fe_deficiency chlorosis. The results revealed that the hybrids had more sensitive feedback systems which secreted more phytosiderophores under Fe_deficiency than their parents. By analyzing the relationship between each hybrid and its parents, it was also found that the parents should be selected on the basis of the rate of PS release and the combining ability by using the heterosis to improve Fe utilizability of crop plants.