Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR wer...Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.展开更多
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Presentation of the disease ranges from simple steatosis to non-alcoholic steatohepatitis (NASH). NAFLD is a hepatic manifestati...Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Presentation of the disease ranges from simple steatosis to non-alcoholic steatohepatitis (NASH). NAFLD is a hepatic manifestation of metabolic syndrome that includes central abdominal obesity along with other components. Up to 80% of patients with NAFLD are obese, defined as a body mass index (BMI) > 30 kg/m<sup>2</sup>. However, the distribution of fat tissue plays a greater role in insulin resistance than the BMI. The large amount of visceral adipose tissue (VAT) in morbidly obese (BMI > 40 kg/m<sup>2</sup>) individuals contributes to a high prevalence of NAFLD. Free fatty acids derived from VAT tissue, as well as from dietary sources and de novo lipogenesis, are released to the portal venous system. Excess free fatty acids and chronic low-grade inflammation from VAT are considered to be two of the most important factors contributing to liver injury progression in NAFLD. In addition, secretion of adipokines from VAT as well as lipid accumulation in the liver further promotes inflammation through nuclear factor kappa B signaling pathways, which are also activated by free fatty acids, and contribute to insulin resistance. Most NAFLD patients are asymptomatic on clinical presentation, even though some may present with fatigue, dyspepsia, dull pain in the liver and hepatosplenomegaly. Treatment for NAFLD and NASH involves weight reduction through lifestyle modifications, anti-obesity medication and bariatric surgery. This article reviews the available information on the biochemical and metabolic phenotypes associated with obesity and fatty liver disease. The relative contribution of visceral and liver fat to insulin resistance is discussed, and recommendations for clinical evaluation of affected individuals is provided.展开更多
文摘Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.
文摘Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Presentation of the disease ranges from simple steatosis to non-alcoholic steatohepatitis (NASH). NAFLD is a hepatic manifestation of metabolic syndrome that includes central abdominal obesity along with other components. Up to 80% of patients with NAFLD are obese, defined as a body mass index (BMI) > 30 kg/m<sup>2</sup>. However, the distribution of fat tissue plays a greater role in insulin resistance than the BMI. The large amount of visceral adipose tissue (VAT) in morbidly obese (BMI > 40 kg/m<sup>2</sup>) individuals contributes to a high prevalence of NAFLD. Free fatty acids derived from VAT tissue, as well as from dietary sources and de novo lipogenesis, are released to the portal venous system. Excess free fatty acids and chronic low-grade inflammation from VAT are considered to be two of the most important factors contributing to liver injury progression in NAFLD. In addition, secretion of adipokines from VAT as well as lipid accumulation in the liver further promotes inflammation through nuclear factor kappa B signaling pathways, which are also activated by free fatty acids, and contribute to insulin resistance. Most NAFLD patients are asymptomatic on clinical presentation, even though some may present with fatigue, dyspepsia, dull pain in the liver and hepatosplenomegaly. Treatment for NAFLD and NASH involves weight reduction through lifestyle modifications, anti-obesity medication and bariatric surgery. This article reviews the available information on the biochemical and metabolic phenotypes associated with obesity and fatty liver disease. The relative contribution of visceral and liver fat to insulin resistance is discussed, and recommendations for clinical evaluation of affected individuals is provided.