A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control sy...The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.展开更多
EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a v...EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.展开更多
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
基金supported in part by the ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)
文摘The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.
基金supported by Key Project of National Ninth Five-Year Research Program of China[(1998)1303]
文摘EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.