针对如何实现只有单训练样本情况下人脸认证,提出基于稀疏扩展字典学习的代价敏感单样本人脸认证方法。首先学习一种可将训练样本和一般训练集结合起来的投影方式来构造适合训练样本的稀疏扩展字典,而并非独立地利用一般训练集直接构造...针对如何实现只有单训练样本情况下人脸认证,提出基于稀疏扩展字典学习的代价敏感单样本人脸认证方法。首先学习一种可将训练样本和一般训练集结合起来的投影方式来构造适合训练样本的稀疏扩展字典,而并非独立地利用一般训练集直接构造扩展字典,从而更好地解决单训练样本不能涵盖测试条件变化的问题;其次通过稀疏表示分类得到与测试样本最相似的训练样本,然后对测试样本和该训练样本分别提取HOG特征,根据距离准则计算相似度判断是否在阈值范围内;最终实现在光照、表情变化情况下的单训练样本人脸鲁棒认证。该方法分别在AR、CMU-PIE和Extended Yale B 3个公共人脸数据库上进行实验,均取得较满意的结果,验证了该方法的可行性和有效性。展开更多
动态人脸跟踪过程中,现有的跟踪算法存在快速运动、遮挡和频繁进出摄像机视野下无法及时判定跟踪漂移导致跟踪失败,而目标再出现时作为新的目标进行跟踪.针对以上难题,提出一种融合跟踪校验和深度学习识别辅助的动态人脸跟踪算法(Kernel...动态人脸跟踪过程中,现有的跟踪算法存在快速运动、遮挡和频繁进出摄像机视野下无法及时判定跟踪漂移导致跟踪失败,而目标再出现时作为新的目标进行跟踪.针对以上难题,提出一种融合跟踪校验和深度学习识别辅助的动态人脸跟踪算法(Kernelized correlation filter with verification and recognition,KCFVR).跟踪算法核心是结合核相关滤波框架,通过跟踪校验算法判定人脸目标是否跟踪漂移导致跟踪失败;在目标重新出现时,结合深度学习网络识别辅助方法判定是否为新目标.实验结果表明:跟踪校验算法及时减少跟踪误差积累,识别辅助算法在跟踪成功率及识别精度上,都取得较优的实验结果,实现同一人脸目标的实时、持续跟踪.展开更多
文摘针对如何实现只有单训练样本情况下人脸认证,提出基于稀疏扩展字典学习的代价敏感单样本人脸认证方法。首先学习一种可将训练样本和一般训练集结合起来的投影方式来构造适合训练样本的稀疏扩展字典,而并非独立地利用一般训练集直接构造扩展字典,从而更好地解决单训练样本不能涵盖测试条件变化的问题;其次通过稀疏表示分类得到与测试样本最相似的训练样本,然后对测试样本和该训练样本分别提取HOG特征,根据距离准则计算相似度判断是否在阈值范围内;最终实现在光照、表情变化情况下的单训练样本人脸鲁棒认证。该方法分别在AR、CMU-PIE和Extended Yale B 3个公共人脸数据库上进行实验,均取得较满意的结果,验证了该方法的可行性和有效性。
文摘动态人脸跟踪过程中,现有的跟踪算法存在快速运动、遮挡和频繁进出摄像机视野下无法及时判定跟踪漂移导致跟踪失败,而目标再出现时作为新的目标进行跟踪.针对以上难题,提出一种融合跟踪校验和深度学习识别辅助的动态人脸跟踪算法(Kernelized correlation filter with verification and recognition,KCFVR).跟踪算法核心是结合核相关滤波框架,通过跟踪校验算法判定人脸目标是否跟踪漂移导致跟踪失败;在目标重新出现时,结合深度学习网络识别辅助方法判定是否为新目标.实验结果表明:跟踪校验算法及时减少跟踪误差积累,识别辅助算法在跟踪成功率及识别精度上,都取得较优的实验结果,实现同一人脸目标的实时、持续跟踪.