The effects of the characteristics of molecules and external fields on field-free molecular orientation are investigated through the comparison of HBr with LiH driven by the combination of a two-color laser pulse and ...The effects of the characteristics of molecules and external fields on field-free molecular orientation are investigated through the comparison of HBr with LiH driven by the combination of a two-color laser pulse and a time-delayed THz laser pulse. It is shown that the dipole interaction has greater influence on field-free orientation than the hyperpolarizability interaction. In addition to the temperature dependence of orientation degree, the effects of the amplitudes of the two-color laser pulse and THz laser pulse, rising time, and THz laser frequency on molecular orientation are also discussed.展开更多
Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as i...Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11674198)the Taishan Scholar Project of Shandong Province,Chinathe Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AM002)
文摘The effects of the characteristics of molecules and external fields on field-free molecular orientation are investigated through the comparison of HBr with LiH driven by the combination of a two-color laser pulse and a time-delayed THz laser pulse. It is shown that the dipole interaction has greater influence on field-free orientation than the hyperpolarizability interaction. In addition to the temperature dependence of orientation degree, the effects of the amplitudes of the two-color laser pulse and THz laser pulse, rising time, and THz laser frequency on molecular orientation are also discussed.
基金Acknowledgements The project was sponsored by the National Basic Research Program of China (973 Program) (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61527824, 11434007, 11374196, 11404200, 11504216, and U1510133), PCSIRT (No. IRT13076), and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province.
文摘Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.