The algebraic independence of e^θ1,…,e^θs is proved, where θ1,… ,θs are certain gap series or power series of algebraic numbers, or certain transcendental continued fractions with algebraic elements.
Exponential integral for real arguments is evaluated by employing a fast-converging power series originally developed for the resolution of Grandi’s paradox. Laguerre’s historic solution is first recapitulated and t...Exponential integral for real arguments is evaluated by employing a fast-converging power series originally developed for the resolution of Grandi’s paradox. Laguerre’s historic solution is first recapitulated and then the new solution method is described in detail. Numerical results obtained from the present series solution are compared with the tabulated values correct to nine decimal places. Finally, comments are made for the further use of the present approach for integrals involving definite functions in denominator.展开更多
The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made ...The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made by an integral transformation which is a modified Laplace transformation and is called Sumudu transformation. It makes the transition from the Exponential series to the Geometric series and may help to evaluate new infinite power series from known Taylor series. The Sumudu transformation is demonstrated to be a limiting case of Fractional integration. Apart from the basic Sumudu integral transformation we discuss a modification where the coefficients ?from the Taylor series are not changed to f(n)(0)?but only to . Beside simple examples our applications are mainly concerned to calculate new Generating functions for Hermite polynomials from the basic ones.展开更多
文摘The algebraic independence of e^θ1,…,e^θs is proved, where θ1,… ,θs are certain gap series or power series of algebraic numbers, or certain transcendental continued fractions with algebraic elements.
文摘Exponential integral for real arguments is evaluated by employing a fast-converging power series originally developed for the resolution of Grandi’s paradox. Laguerre’s historic solution is first recapitulated and then the new solution method is described in detail. Numerical results obtained from the present series solution are compared with the tabulated values correct to nine decimal places. Finally, comments are made for the further use of the present approach for integrals involving definite functions in denominator.
文摘The transition from a known Taylor series ?of a known function f(x) to a new function ?primarily defined by the infinite power series ?with coefficients f(n)(0)?from the Taylor series of the function f(x)?can be made by an integral transformation which is a modified Laplace transformation and is called Sumudu transformation. It makes the transition from the Exponential series to the Geometric series and may help to evaluate new infinite power series from known Taylor series. The Sumudu transformation is demonstrated to be a limiting case of Fractional integration. Apart from the basic Sumudu integral transformation we discuss a modification where the coefficients ?from the Taylor series are not changed to f(n)(0)?but only to . Beside simple examples our applications are mainly concerned to calculate new Generating functions for Hermite polynomials from the basic ones.