Background: Garlic extracts have been reported to be effective in reducing methanogenesis. Related mechanisms are not well illustrated, however, and most studies have been conducted in vitro. This study investigates ...Background: Garlic extracts have been reported to be effective in reducing methanogenesis. Related mechanisms are not well illustrated, however, and most studies have been conducted in vitro. This study investigates the effects of supplementary allicin(AL) in sheep diet on in vivo digestibility, rumen fermentation, and shifts of microbial flora.Methods: Two experiments were conducted using Dorper × thin-tailed Han crossbred ewes. In experiment 1,eighteen ewes(60.0 ± 1.73 kg BW) were randomly assigned for 29 days to either of two dietary treatments: a basal diet or the basal diet supplemented with 2.0 g AL/head?day to investigate supplementary AL on nutrient digestibility and methane emissions. In experiment 2, six ewes(65.2 ± 2.0 kg BW) with ruminal canulas were assigned to the same two dietary treatments as in experiment 1 for 42 days to investigate supplementary AL on ruminal fermentation and microbial flora. The methane emissions were determined using an open-circuit respirometry system and microbial assessment was done by q PCR of 16 S r RNA genes.Results: Supplementary AL increased the apparent digestibility of organic matter(P 〈 0.001), nitrogen(P = 0.006),neutral detergent fiber(P 〈 0.001), and acid detergent fiber(P = 0.002). Fecal nitrogen output was reduced(P = 0.001)but urinary nitrogen output was unaffected(P = 0.691), while nitrogen retention(P = 0.077) and nitrogen retention/nitrogen intake(P = 0.077) tended to increase. Supplementary AL decreased methane emissions scaled to metabolic bodyweight by 5.95 %(P = 0.007) and to digestible organic matter intake by 8.36 %(P = 0.009). Ruminal p H was unaffected(P = 0.601) while ammonia decreased(P = 0.024) and total volatile fatty acids increased(P = 0.024) in response to supplementary AL. Supplementary AL decreased the population of methanogens(P = 0.001) and tended to decrease that of protozoans(P = 0.097), but increased the populations of F. succinogenes(P 〈 0.00展开更多
Background: Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(...Background: Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss. Result: In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis. Conclusion: These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.展开更多
The sheep genome harbours approximately 20 copies of endogenous beta-retroviruses (enJSRVs), and circumstantial evidence suggests that enJSRVs might play a role in mammalian reproduction, particularly placental morp...The sheep genome harbours approximately 20 copies of endogenous beta-retroviruses (enJSRVs), and circumstantial evidence suggests that enJSRVs might play a role in mammalian reproduction, particularly placental morphogenesis. This study was aimed to assess the expression of mRNAs of an enJSRV and its receptor, HYAL2, in the uterus and conceptuses of Mongolian ewes throughout gestation, using real-time reverse transcription polymerase chain reaction and in situ hybridization analysis. The results showed that enJSRV and HYAL2 mRNAs were found to be expressed throughout gestation in the endometrium, chorion, placenta, and conceptus. The enJSRV mRNA was most abundant in the placenta on day 90 of pregnancy, in the endometrium on day 30 and 50, and in the chorion on day 70 and 110. However, HYAL2 mRNA was most abundant in the endometrium on day 30. These differences were all significantly different from each other (P〈0.01). In situ hybridization showed that enJSRV and HYAL2 mRNAs were specifically expressed in endometrial luminal epithelium and glandular epithelium, trophoblastic giant binucleated cells (BNCs), endometrial caruncles, placental cotyledons, stroma, trophectoderm, as well as multinucleated syncytia of the placenta and blood vessel endothelial cells. Collectively, little is known about the molecular mechanisms by which trophoblastic differentiation and multinucleated syncytia formation are regulated by enJSRVs. However, the temporal and spatial distributions of enJSRV expression in the uterus and conceptus indicate that differentiation of BNCs and the formation of a multinucleated syncytiotrophoblast involve enJSRV and possibly its cellular receptor, HYAL2. Therefore, enJSRV and HYAL2 appear to play important roles in the female reproductive physiology in this breed of sheep.展开更多
基金funded by the Ministry of Science and Technology of the People’s Republic of China (Program 2012BAD39B05)earmarked fund for China Agriculture Research System (CARS-39)
文摘Background: Garlic extracts have been reported to be effective in reducing methanogenesis. Related mechanisms are not well illustrated, however, and most studies have been conducted in vitro. This study investigates the effects of supplementary allicin(AL) in sheep diet on in vivo digestibility, rumen fermentation, and shifts of microbial flora.Methods: Two experiments were conducted using Dorper × thin-tailed Han crossbred ewes. In experiment 1,eighteen ewes(60.0 ± 1.73 kg BW) were randomly assigned for 29 days to either of two dietary treatments: a basal diet or the basal diet supplemented with 2.0 g AL/head?day to investigate supplementary AL on nutrient digestibility and methane emissions. In experiment 2, six ewes(65.2 ± 2.0 kg BW) with ruminal canulas were assigned to the same two dietary treatments as in experiment 1 for 42 days to investigate supplementary AL on ruminal fermentation and microbial flora. The methane emissions were determined using an open-circuit respirometry system and microbial assessment was done by q PCR of 16 S r RNA genes.Results: Supplementary AL increased the apparent digestibility of organic matter(P 〈 0.001), nitrogen(P = 0.006),neutral detergent fiber(P 〈 0.001), and acid detergent fiber(P = 0.002). Fecal nitrogen output was reduced(P = 0.001)but urinary nitrogen output was unaffected(P = 0.691), while nitrogen retention(P = 0.077) and nitrogen retention/nitrogen intake(P = 0.077) tended to increase. Supplementary AL decreased methane emissions scaled to metabolic bodyweight by 5.95 %(P = 0.007) and to digestible organic matter intake by 8.36 %(P = 0.009). Ruminal p H was unaffected(P = 0.601) while ammonia decreased(P = 0.024) and total volatile fatty acids increased(P = 0.024) in response to supplementary AL. Supplementary AL decreased the population of methanogens(P = 0.001) and tended to decrease that of protozoans(P = 0.097), but increased the populations of F. succinogenes(P 〈 0.00
基金supported by grants from the National High-Tech R&D Program (Nos.2011AA100303,2013AA102506)the National Key Technology R&D Program(Nos.2011BAD19B01,2011BAD19B03,2011BAD19B04)
文摘Background: Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss. Result: In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis. Conclusion: These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.
基金funded by the National Natural Science Foundation of China (30960271 and 31160493)the doctor fund project of Ministry of Education of China(20111515110008)
文摘The sheep genome harbours approximately 20 copies of endogenous beta-retroviruses (enJSRVs), and circumstantial evidence suggests that enJSRVs might play a role in mammalian reproduction, particularly placental morphogenesis. This study was aimed to assess the expression of mRNAs of an enJSRV and its receptor, HYAL2, in the uterus and conceptuses of Mongolian ewes throughout gestation, using real-time reverse transcription polymerase chain reaction and in situ hybridization analysis. The results showed that enJSRV and HYAL2 mRNAs were found to be expressed throughout gestation in the endometrium, chorion, placenta, and conceptus. The enJSRV mRNA was most abundant in the placenta on day 90 of pregnancy, in the endometrium on day 30 and 50, and in the chorion on day 70 and 110. However, HYAL2 mRNA was most abundant in the endometrium on day 30. These differences were all significantly different from each other (P〈0.01). In situ hybridization showed that enJSRV and HYAL2 mRNAs were specifically expressed in endometrial luminal epithelium and glandular epithelium, trophoblastic giant binucleated cells (BNCs), endometrial caruncles, placental cotyledons, stroma, trophectoderm, as well as multinucleated syncytia of the placenta and blood vessel endothelial cells. Collectively, little is known about the molecular mechanisms by which trophoblastic differentiation and multinucleated syncytia formation are regulated by enJSRVs. However, the temporal and spatial distributions of enJSRV expression in the uterus and conceptus indicate that differentiation of BNCs and the formation of a multinucleated syncytiotrophoblast involve enJSRV and possibly its cellular receptor, HYAL2. Therefore, enJSRV and HYAL2 appear to play important roles in the female reproductive physiology in this breed of sheep.