期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EK-NN的水声目标识别算法研究 被引量:3
1
作者 张扬 杨建华 侯宏 《声学技术》 CSCD 北大核心 2016年第1期15-19,共5页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。 展开更多
关键词 水声目标识别 证据理论 证据k类近邻算法(ek-nn) 特征向量 组合规则
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部