The Chezhen depression,located in the south of Bohai Bay Basin,is an oil-producing basin in China. The third and fourth members of the Shahejie Formation(E(s3) and E(s4)) are the main source rock series in the Chezhen...The Chezhen depression,located in the south of Bohai Bay Basin,is an oil-producing basin in China. The third and fourth members of the Shahejie Formation(E(s3) and E(s4)) are the main source rock series in the Chezhen depression. Widespread overpressures occurred in the E(s3) and E(s4) from the depths of approximately 2 000 to 4 600 m,with the maximum pressure coefficient of 1.98 from drillstem tests(DST). Among the sonic,resistivity and density logs,sonic-log is the only reliable pressure indicator and can be used to predict the pore pressure with Eaton's method. All the overpressured mudstones in the source rock series have higher acoustic traveltimes compared with normally pressured mudstones at a given depth. The overpressured mudstones in the E(s3) and E(s4) units are characterized by a normal geothermal gradient,high average density values up to 2.5 g/cm^3,strong present-day hydrocarbon generation capability,abundant mature organic matter and high contents of residual hydrocarbons estimated by the Rock-Eval S1 values and chloroform-soluble bitumen "A" values. All suggest that the dominant mechanism for overpressure in the mudstones of source rock series in the Chezhen depression is hydrocarbon generation. A comparison between the matrix porosity of the normally pressured sandstones and overpressured sandstones,the quantitative evaluation of porosity loss caused by compaction and the conventional thin section inspection demonstrate that the sandstones in the Chezhen depression were normally compacted. The high contents of hydrocarbons in the overpressured reservoirs prove that the overpressure in the sandstones of the source rock series was caused by pressure transmission from the source rocks.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolu...Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater di展开更多
基金sponsored by the China National Science and Technology Major Project (No. 2016ZX05006003-001)the Programme of Introducing Talents of Discipline to Universities (No. B14031)+1 种基金the National Natural Science Foundation of China (Nos. 41572114, 41302110)The SINOPEC Shengli Oilfield is thanked for providing background geological data and support
文摘The Chezhen depression,located in the south of Bohai Bay Basin,is an oil-producing basin in China. The third and fourth members of the Shahejie Formation(E(s3) and E(s4)) are the main source rock series in the Chezhen depression. Widespread overpressures occurred in the E(s3) and E(s4) from the depths of approximately 2 000 to 4 600 m,with the maximum pressure coefficient of 1.98 from drillstem tests(DST). Among the sonic,resistivity and density logs,sonic-log is the only reliable pressure indicator and can be used to predict the pore pressure with Eaton's method. All the overpressured mudstones in the source rock series have higher acoustic traveltimes compared with normally pressured mudstones at a given depth. The overpressured mudstones in the E(s3) and E(s4) units are characterized by a normal geothermal gradient,high average density values up to 2.5 g/cm^3,strong present-day hydrocarbon generation capability,abundant mature organic matter and high contents of residual hydrocarbons estimated by the Rock-Eval S1 values and chloroform-soluble bitumen "A" values. All suggest that the dominant mechanism for overpressure in the mudstones of source rock series in the Chezhen depression is hydrocarbon generation. A comparison between the matrix porosity of the normally pressured sandstones and overpressured sandstones,the quantitative evaluation of porosity loss caused by compaction and the conventional thin section inspection demonstrate that the sandstones in the Chezhen depression were normally compacted. The high contents of hydrocarbons in the overpressured reservoirs prove that the overpressure in the sandstones of the source rock series was caused by pressure transmission from the source rocks.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)for Excellent Doctoral Dissertation supported by China University of Petroleum,China
文摘Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater di