研究目的:本文以某山地米轨铁路为例,研究坡度250‰以上有砟轨道结构的稳定性和极限坡度。首先进行米轨混凝土枕的道床阻力测试试验,并建立轨排结构有限元模型,分析坡度和扣件阻力对轨排结构稳定性的影响;接着建立米轨有砟轨道三维有限...研究目的:本文以某山地米轨铁路为例,研究坡度250‰以上有砟轨道结构的稳定性和极限坡度。首先进行米轨混凝土枕的道床阻力测试试验,并建立轨排结构有限元模型,分析坡度和扣件阻力对轨排结构稳定性的影响;接着建立米轨有砟轨道三维有限元模型,研究坡度与竖曲线半径对有砟道床稳定性的影响;最后,根据扣件阻力、道床阻力与大坡道有砟轨道稳定性的关系提出米轨有砟轨道极限坡度和竖曲线半径的建议值。研究结论:(1)通过试验测试,得到了道床阻力-位移关系,结果表明轨排结构的稳定性随坡度增大而减弱,在扣件阻力不大于10 k N/组时其极限坡度为500‰;(2)有砟道床的稳定性随着坡度的增大而逐渐减弱,在列车荷载作用下,有砟道床保持稳定的最大坡度为500‰;(3)变坡点凸形竖曲线附近道床稳定性弱于直坡道地段,且其稳定性随着竖曲线半径的增大而逐渐增强,在坡度为250‰的情况下,为了保持有砟道床稳定竖曲线半径不能小于400 m;(4)本文研究成果可为米轨铁路大坡道有砟轨道结构稳定性分析提供理论与试验依据。展开更多
This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element me...This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the yon Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273 -398 K, 218 -398 K and 198 -398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys ( Sn3.8AG0. 7Cu, Sn3.5Ag and Sn37Pb ) was also carried out.展开更多
文摘研究目的:本文以某山地米轨铁路为例,研究坡度250‰以上有砟轨道结构的稳定性和极限坡度。首先进行米轨混凝土枕的道床阻力测试试验,并建立轨排结构有限元模型,分析坡度和扣件阻力对轨排结构稳定性的影响;接着建立米轨有砟轨道三维有限元模型,研究坡度与竖曲线半径对有砟道床稳定性的影响;最后,根据扣件阻力、道床阻力与大坡道有砟轨道稳定性的关系提出米轨有砟轨道极限坡度和竖曲线半径的建议值。研究结论:(1)通过试验测试,得到了道床阻力-位移关系,结果表明轨排结构的稳定性随坡度增大而减弱,在扣件阻力不大于10 k N/组时其极限坡度为500‰;(2)有砟道床的稳定性随着坡度的增大而逐渐减弱,在列车荷载作用下,有砟道床保持稳定的最大坡度为500‰;(3)变坡点凸形竖曲线附近道床稳定性弱于直坡道地段,且其稳定性随着竖曲线半径的增大而逐渐增强,在坡度为250‰的情况下,为了保持有砟道床稳定竖曲线半径不能小于400 m;(4)本文研究成果可为米轨铁路大坡道有砟轨道结构稳定性分析提供理论与试验依据。
基金the Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan under Grant No. CX07B_087zthe Six Kind Skilled Personnel Project of Jiangsu Province,under Grant No. 06-E-020
文摘This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the yon Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273 -398 K, 218 -398 K and 198 -398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys ( Sn3.8AG0. 7Cu, Sn3.5Ag and Sn37Pb ) was also carried out.