Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Ser...Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Server,MLRC,Geno3d,DNA star software packages were used to predict the physical and chemical properties,hydrophilicity plot, flexibility regions,antigenic index,surface probability plot,secondary structure,and tertiary structure of amino acid sequence of SJAQP-3.Results:SJAQP-3 had six transmembrane regions and two half-spanning helices that form a central channel.The half-spanning helices fold into the centre of the channel.Either of the half-spanning helix had a conserved motif of NPA common to all aquaporins.Predicted linear B-Cell epitopes were most likely at the N-terminal amino acid residues of Saa-7aa,59aa- 62aa,225aa-230aa,282aa -288aa,294aa -29Saa and 305aa -307aa area.59aa- 62aa,22Saa-230aa located outside the membrane,the others located inside the cell.Conclusions:SJAQP-3 is a integral membrane protein in Schistosoma japonicum tegument.There are six potential epitopes in SJ AQP-3.It might be a potential molecular target for the development of vaccines.展开更多
Objective To obtain peptide mimicking epitopes of Schistosoma japonicum (S.japonicum) through screening of a phage peptide library and to test their potential for induction of protection. Methods S.japonicum infect...Objective To obtain peptide mimicking epitopes of Schistosoma japonicum (S.japonicum) through screening of a phage peptide library and to test their potential for induction of protection. Methods S.japonicum infected sera from Microtus fortis (IMFS) and normal sera from Microtus fortis (NMFS) were used respectively to screen a 12-mers random peptide library by testing the reactivity of anti-S.japonicum serum with the phagotopes. After three rounds of biopanning, the pooled phages were used to immunize mice, after which challenge infection was performed. Results Of 12 randomly picked clones, 10 clones selected using IMFS and 7 clones selected using NMFS were shown to be antigenic. Significant reduction in adult worms (22.6%) and a high reduction (68.9%) in liver eggs were achieved following immunization with phages screened with IMFS. However, no protection was elicited by those selected with NMFS. Conclusion The results show that the phagotopes are both antigenic and immunogenic, suggesting a potential use of phage displayed peptide as novel vaccines against S. japonicum.展开更多
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cel...Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes; some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3; 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera,; found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide; PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes,; would be of the value as a candidate for the development of HCV vaccines.展开更多
AIM: To characterize the biochemical and immunological properties of an experimental ISCOMS vaccine prepared from a novel therapeutic polypeptide based on T cell epitopes of HBsAg, and a heptatis B-ISCOMS was prepared...AIM: To characterize the biochemical and immunological properties of an experimental ISCOMS vaccine prepared from a novel therapeutic polypeptide based on T cell epitopes of HBsAg, and a heptatis B-ISCOMS was prepared and investigated. METHODS: An immunostimulating complexes(ISCOMS)-based vaccine containing a novel therapeutic hepatitis B polypeptide was prepared by dialysis method, and its formation was visualized by electron microscopy and biochemically verified by SDS-polyacrylamide gel electrophoresis. Amount of the peptide within ISCOMS was determined by Bradford assay, and specific CTL response was detected by ELISPOT assay. RESULTS: Typical cage-like structures of submicroparticle with a diameter of about 40nm were observed by electron microscopy. Results from Bradford assay showed that the level of peptide incorporation was about 0.33g.L(-1). At the paralleled position close to the sixth band of the molecular weight marker(3480kDa) a clear band was shown in SDS-PAGE analysis, indicating successful incorporation of polypeptide into ISCOMS. It is suggested that ISCOMS delivery system could efficiently improve the immunogenicity of polypeptide and elicit specific immune responses in vivo by the results of ELISPOT assay, which showed that IFN-gamma producing cells(specific CTL responses) were increased(spots of ISCOMS-treated group: 47+/-5, n =3; control group: 5+/-2, n =3). CONCLUSION: ISCOMS-based hepatitis B polypeptide vaccine is successfully constructed and it induces a higher CTL response compared with short polypeptides vaccine in vivo.展开更多
目的:预测人宫颈癌基因(human cervical cancer oncogene,HCCR)蛋白的二级结构,B细胞表位及其HLA-A,B限制性细胞毒性T细胞表位.方法:综合分析二级结构、亲水性、柔韧性、表面可及性与抗原性指数,预测HCCR蛋白的B细胞抗原表位;利用BIMAS,...目的:预测人宫颈癌基因(human cervical cancer oncogene,HCCR)蛋白的二级结构,B细胞表位及其HLA-A,B限制性细胞毒性T细胞表位.方法:综合分析二级结构、亲水性、柔韧性、表面可及性与抗原性指数,预测HCCR蛋白的B细胞抗原表位;利用BIMAS,SYFPEITHI和NetCTL方法预测分析其HLA-A*0201限制性CTL表位,运用NetCTL方法对HLA-A的其他等位基因和HLA-B限制性CTL表位进行预测分析.结果:HCCR蛋白的二级结构主要由α-螺旋结构组成,B细胞优势表位位于N端第41~53,216~228,310~325和355~360区段;预测得到5个HLA-A*0201限制性CTL优势表位分别为YLVFLLMYL(152~160),YLFPRQLLI(159~167),LLLHNVVLL(343~351),CLFLGIISI(138~146)和SIPPFA-NYL(145~153),HCCR蛋白HLA-A,B限制CTL表位主要位于胞外区.结论:应用多参数预测HCCR蛋白B细胞表位及其HLA-A,B限制性细胞毒性T细胞表位,为进一步实验鉴定其表位进而制备单克隆抗体和基于HCCR抗原的肿瘤免疫学治疗奠定了基础.展开更多
文摘Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Server,MLRC,Geno3d,DNA star software packages were used to predict the physical and chemical properties,hydrophilicity plot, flexibility regions,antigenic index,surface probability plot,secondary structure,and tertiary structure of amino acid sequence of SJAQP-3.Results:SJAQP-3 had six transmembrane regions and two half-spanning helices that form a central channel.The half-spanning helices fold into the centre of the channel.Either of the half-spanning helix had a conserved motif of NPA common to all aquaporins.Predicted linear B-Cell epitopes were most likely at the N-terminal amino acid residues of Saa-7aa,59aa- 62aa,225aa-230aa,282aa -288aa,294aa -29Saa and 305aa -307aa area.59aa- 62aa,22Saa-230aa located outside the membrane,the others located inside the cell.Conclusions:SJAQP-3 is a integral membrane protein in Schistosoma japonicum tegument.There are six potential epitopes in SJ AQP-3.It might be a potential molecular target for the development of vaccines.
基金ThisworkissupportedbygrantsfromMinistryofScienceandTechnologyofChina (No 96 A2 3 0 6 0 4),WHO/TDR (IDNo 980 2 5 5 )andNewEnglandBiolabs,Inc USA
文摘Objective To obtain peptide mimicking epitopes of Schistosoma japonicum (S.japonicum) through screening of a phage peptide library and to test their potential for induction of protection. Methods S.japonicum infected sera from Microtus fortis (IMFS) and normal sera from Microtus fortis (NMFS) were used respectively to screen a 12-mers random peptide library by testing the reactivity of anti-S.japonicum serum with the phagotopes. After three rounds of biopanning, the pooled phages were used to immunize mice, after which challenge infection was performed. Results Of 12 randomly picked clones, 10 clones selected using IMFS and 7 clones selected using NMFS were shown to be antigenic. Significant reduction in adult worms (22.6%) and a high reduction (68.9%) in liver eggs were achieved following immunization with phages screened with IMFS. However, no protection was elicited by those selected with NMFS. Conclusion The results show that the phagotopes are both antigenic and immunogenic, suggesting a potential use of phage displayed peptide as novel vaccines against S. japonicum.
基金supported by the National Natural Science Foundation of China(Grant No.30471596)
文摘Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes; some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3; 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera,; found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide; PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes,; would be of the value as a candidate for the development of HCV vaccines.
基金the National Natural Science Foundation of China,No.39789010
文摘AIM: To characterize the biochemical and immunological properties of an experimental ISCOMS vaccine prepared from a novel therapeutic polypeptide based on T cell epitopes of HBsAg, and a heptatis B-ISCOMS was prepared and investigated. METHODS: An immunostimulating complexes(ISCOMS)-based vaccine containing a novel therapeutic hepatitis B polypeptide was prepared by dialysis method, and its formation was visualized by electron microscopy and biochemically verified by SDS-polyacrylamide gel electrophoresis. Amount of the peptide within ISCOMS was determined by Bradford assay, and specific CTL response was detected by ELISPOT assay. RESULTS: Typical cage-like structures of submicroparticle with a diameter of about 40nm were observed by electron microscopy. Results from Bradford assay showed that the level of peptide incorporation was about 0.33g.L(-1). At the paralleled position close to the sixth band of the molecular weight marker(3480kDa) a clear band was shown in SDS-PAGE analysis, indicating successful incorporation of polypeptide into ISCOMS. It is suggested that ISCOMS delivery system could efficiently improve the immunogenicity of polypeptide and elicit specific immune responses in vivo by the results of ELISPOT assay, which showed that IFN-gamma producing cells(specific CTL responses) were increased(spots of ISCOMS-treated group: 47+/-5, n =3; control group: 5+/-2, n =3). CONCLUSION: ISCOMS-based hepatitis B polypeptide vaccine is successfully constructed and it induces a higher CTL response compared with short polypeptides vaccine in vivo.
文摘目的:预测人宫颈癌基因(human cervical cancer oncogene,HCCR)蛋白的二级结构,B细胞表位及其HLA-A,B限制性细胞毒性T细胞表位.方法:综合分析二级结构、亲水性、柔韧性、表面可及性与抗原性指数,预测HCCR蛋白的B细胞抗原表位;利用BIMAS,SYFPEITHI和NetCTL方法预测分析其HLA-A*0201限制性CTL表位,运用NetCTL方法对HLA-A的其他等位基因和HLA-B限制性CTL表位进行预测分析.结果:HCCR蛋白的二级结构主要由α-螺旋结构组成,B细胞优势表位位于N端第41~53,216~228,310~325和355~360区段;预测得到5个HLA-A*0201限制性CTL优势表位分别为YLVFLLMYL(152~160),YLFPRQLLI(159~167),LLLHNVVLL(343~351),CLFLGIISI(138~146)和SIPPFA-NYL(145~153),HCCR蛋白HLA-A,B限制CTL表位主要位于胞外区.结论:应用多参数预测HCCR蛋白B细胞表位及其HLA-A,B限制性细胞毒性T细胞表位,为进一步实验鉴定其表位进而制备单克隆抗体和基于HCCR抗原的肿瘤免疫学治疗奠定了基础.