Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric ...Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological and clinicopathological features. The etiology of gastric cancer is multifactorial and includes both dietary and nondietary factors. The major diet-related risk factors implicated in stomach cancer development include high content of nitrates and high salt intake. Accumulating evidence has implicated the role of Helicobacter pylori (H. pylori) infection in the pathogenesis of gastric cancer. The development of gastric cancer is a complex, multistep process involving multiple genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell cycle regulators, and signaling molecules. A plausible program for gastric cancer prevention involves intake of a balanced diet containing fruits and vegetables, improved sanitationand hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions. The fact that diet plays an important role in the etiology of gastric cancer offers scope for nutritional chemoprevention. Animal models have been extensively used to analyze the stepwise evolution of gastric carcinogenesis and to test dietary chemopreventive agents. Development of multitargeted preventive and therapeutic strategies for gastric cancer is a major challenge for the future.展开更多
Gastric cancer(GC) remains an important cause of cancer death worldwide with a high mortality rate due to the fact that the majority of GC cases are diagnosed at an advanced stage when the prognosis is poor and the tr...Gastric cancer(GC) remains an important cause of cancer death worldwide with a high mortality rate due to the fact that the majority of GC cases are diagnosed at an advanced stage when the prognosis is poor and the treatment options are limited. Unfortunately, the existing circulating biomarkers for GC diagnosis and prognosis display low sensitivity and specificity and the GC diagnosis is based only on the invasive procedures such as upper digestive endoscopy. There is a huge need for less invasive or non-invasive tests but also highly specific biomarkers in case of GC. Body fluids such as peripheral blood, urine or saliva,stomach wash/gastric juice could be a source of specific biomarkers, providing important data for screening and diagnosis in GC. This review summarized the recently discovered circulating molecules such as microRNAs, long non-coding RNAs, circular RNAs, which hold the promise to develop new strategies for early diagnosis of GC.展开更多
Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as...Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as regulation of gene expression. Different lncRNAs exist throughout the genome. LncRNAs are also known for their roles in different human diseases such as cancer. HOTAIR is an lncRNA that plays a role as an oncogenic molecule in different cancer ceils, such as breast, gastric, colorectal, and cervical cancer cells. Therefore, HOTAIR expression level is a potential biomarker for diagnostic and therapeutic purposes in several cancers. This RNA takes part in epigenetic regulation of genes and plays an important role in different cellular pathways by interacting with Polycomb Repressive Complex 2 (PRC2). In this review, we describe the molecular function and regulation of HOTAIR and its role in different types of cancers.展开更多
Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexit...Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexity in domain organization, tissue-specific expression, and function. This review is focused on the family of histone deacetylases (HDACs) that remove the acetyl group from core histone tails, resulting in a "closed" chromatin and transcriptional repression. In Arabidopsis, 18 HDAC genes are divided into three different types - RPD3-1ike, HD-tuin and sirtuin - with two or more members in each type. The structural feature of each HDAC class, the expression profile of each HDAC gene during development and functional insights of important family members are summarized here. It is clear that HDACs are an important class of global transcriptional regulators that play crucial roles in plant development, defense, and adaptation.展开更多
Colorectal cancer(CRC)is one of the most common cancer worldwide and results from the accumulation of mutations and epimutations in colonic mucosa cells ultimately leading to cell proliferation and metastasis.Unfortun...Colorectal cancer(CRC)is one of the most common cancer worldwide and results from the accumulation of mutations and epimutations in colonic mucosa cells ultimately leading to cell proliferation and metastasis.Unfortunately,CRC prognosis is still poor and the search of novel diagnostic and prognostic biomarkers is highly desired to prevent CRC-related deaths.The present article aims to summarize the most recent findings concerning the use of either genetic or epigenetic(mainly related to DNA methylation)biomarkers for CRC diagnosis,prognosis,and response to treatment.Recent large-scale DNA methylation studies suggest that CRC can be divided into several subtypes according to the frequency of DNA methylation and those of mutations in key CRC genes,and that this is reflected by different prognostic outcomes.Increasing evidence suggests that the analysis of DNA methylation in blood or fecal specimens could represent a valuable non-invasive diagnostic tool for CRC.Moreover,a broad spectrum of studies indicates that the inter-individual response to chemotherapeutic treatments depends on both epigenetic modifications and genetic mutations occurring in colorectal cancer cells,thereby opening the way for a personalized medicine.Overall,combining genetic and epigenetic data might represent the most promising tool for a proper diagnostic,prognostic and therapeutic approach.展开更多
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmit- ted into daughter...Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmit- ted into daughter cells and through what mechanisms are currently under active investigation. Previ- ously, methylation was considered to be irreversible, but the recent discovery of histone lysine de- methylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, be- sides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent pro- gresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes.展开更多
Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogeneoverexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanis...Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogeneoverexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a varietyof methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play impor-tant roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpGisland methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesisand its relevance of clinical implications.展开更多
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence.Epigenetic dysregulation is often linked to human disease,not...Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence.Epigenetic dysregulation is often linked to human disease,notably cancer.With the development of various drugs targeting epigenetic regulators,epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials.In this review,we summarize the aberrant functions of enzymes in DNA methylation,histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.展开更多
Immunotherapy strategies targeting the programmed cell death ligand 1(PD-L1)/programmed cell death 1(PD-1)pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer.However,ow...Immunotherapy strategies targeting the programmed cell death ligand 1(PD-L1)/programmed cell death 1(PD-1)pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer.However,owing to the heterogeneity of tumors and individual immune systems,PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients.Accumulating evidence has shown that an effective response to anti-PD-Ll/anti-PD-1 therapy requires establishing an integrated immune cycle.Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure.Impairments in the immune cycle can be restored by epigenetic modification,including reprogramming the environment of tumor-associated immunity,eliciting an immune response by increasing the presentation of tumor antigens,and by regulating T cell trafficking and reactivation.Thus,a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.展开更多
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of mult...Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-poptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and IncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.展开更多
Mammalian fertilization begins with the fusion of two specialized gametes,followed by major epigenetic remodeling leading to the formation of a totipotent embryo.During the development of the pre-implantation embryo,p...Mammalian fertilization begins with the fusion of two specialized gametes,followed by major epigenetic remodeling leading to the formation of a totipotent embryo.During the development of the pre-implantation embryo,precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality,but the underlying molecular mechanisms remain elusive.For the past few years,unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development,taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies.The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals,including DNA methylation,histone modifications,chromatin accessibility and 3D chromatin organization.展开更多
Although thousands of DNA damaging events occur in each cell every day,efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoid...Although thousands of DNA damaging events occur in each cell every day,efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes,it might increase the risk of cancer. In addition to mutations,which can be either inherited or somatically acquired,epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors,Helicobacter pylori(H. pylori) infection is considered the main driving factor to gastric cancer development. Thus,in this review,we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.展开更多
基金Supported by A Grant from the Department of Biotechnology,New Delhi, India under the 7th FP of the Indo-EU Joint Collaborative Project on "FUNCFOOD"
文摘Carcinoma of the stomach is still the second most common cause of cancer death worldwide, although the incidence and mortality have fallen dramatically over the last 50 years in many regions. The incidence of gastric cancer varies in different parts of the world and among various ethnic groups. Despite advances in diagnosis and treatment, the 5-year survival rate of stomach cancer is only 20 per cent. Stomach cancer can be classified into intestinal and diffuse types based on epidemiological and clinicopathological features. The etiology of gastric cancer is multifactorial and includes both dietary and nondietary factors. The major diet-related risk factors implicated in stomach cancer development include high content of nitrates and high salt intake. Accumulating evidence has implicated the role of Helicobacter pylori (H. pylori) infection in the pathogenesis of gastric cancer. The development of gastric cancer is a complex, multistep process involving multiple genetic and epigenetic alterations of oncogenes, tumor suppressor genes, DNA repair genes, cell cycle regulators, and signaling molecules. A plausible program for gastric cancer prevention involves intake of a balanced diet containing fruits and vegetables, improved sanitationand hygiene, screening and treatment of H. pylori infection, and follow-up of precancerous lesions. The fact that diet plays an important role in the etiology of gastric cancer offers scope for nutritional chemoprevention. Animal models have been extensively used to analyze the stepwise evolution of gastric carcinogenesis and to test dietary chemopreventive agents. Development of multitargeted preventive and therapeutic strategies for gastric cancer is a major challenge for the future.
基金Supported by a grant of the Romanian National Authority for Scientific Research and Innovation,CNCS-UEFISCDI,No.PN-Ⅲ-P4-ID-PCCF2016-0158(contract PCCF17/2018)within PNCDI Ⅲ
文摘Gastric cancer(GC) remains an important cause of cancer death worldwide with a high mortality rate due to the fact that the majority of GC cases are diagnosed at an advanced stage when the prognosis is poor and the treatment options are limited. Unfortunately, the existing circulating biomarkers for GC diagnosis and prognosis display low sensitivity and specificity and the GC diagnosis is based only on the invasive procedures such as upper digestive endoscopy. There is a huge need for less invasive or non-invasive tests but also highly specific biomarkers in case of GC. Body fluids such as peripheral blood, urine or saliva,stomach wash/gastric juice could be a source of specific biomarkers, providing important data for screening and diagnosis in GC. This review summarized the recently discovered circulating molecules such as microRNAs, long non-coding RNAs, circular RNAs, which hold the promise to develop new strategies for early diagnosis of GC.
文摘Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as regulation of gene expression. Different lncRNAs exist throughout the genome. LncRNAs are also known for their roles in different human diseases such as cancer. HOTAIR is an lncRNA that plays a role as an oncogenic molecule in different cancer ceils, such as breast, gastric, colorectal, and cervical cancer cells. Therefore, HOTAIR expression level is a potential biomarker for diagnostic and therapeutic purposes in several cancers. This RNA takes part in epigenetic regulation of genes and plays an important role in different cellular pathways by interacting with Polycomb Repressive Complex 2 (PRC2). In this review, we describe the molecular function and regulation of HOTAIR and its role in different types of cancers.
基金the National Science Foundation Grant IOB0616096 to Z.L.
文摘Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexity in domain organization, tissue-specific expression, and function. This review is focused on the family of histone deacetylases (HDACs) that remove the acetyl group from core histone tails, resulting in a "closed" chromatin and transcriptional repression. In Arabidopsis, 18 HDAC genes are divided into three different types - RPD3-1ike, HD-tuin and sirtuin - with two or more members in each type. The structural feature of each HDAC class, the expression profile of each HDAC gene during development and functional insights of important family members are summarized here. It is clear that HDACs are an important class of global transcriptional regulators that play crucial roles in plant development, defense, and adaptation.
基金Supported by T Istituto Toscano Tumori(ITT)No.Prot.AOOGRT/325424/Q.80.110 16/12/2009,‘‘Correlation among epigenetic,environmental and genetic factors in colorectal carcinoma’’
文摘Colorectal cancer(CRC)is one of the most common cancer worldwide and results from the accumulation of mutations and epimutations in colonic mucosa cells ultimately leading to cell proliferation and metastasis.Unfortunately,CRC prognosis is still poor and the search of novel diagnostic and prognostic biomarkers is highly desired to prevent CRC-related deaths.The present article aims to summarize the most recent findings concerning the use of either genetic or epigenetic(mainly related to DNA methylation)biomarkers for CRC diagnosis,prognosis,and response to treatment.Recent large-scale DNA methylation studies suggest that CRC can be divided into several subtypes according to the frequency of DNA methylation and those of mutations in key CRC genes,and that this is reflected by different prognostic outcomes.Increasing evidence suggests that the analysis of DNA methylation in blood or fecal specimens could represent a valuable non-invasive diagnostic tool for CRC.Moreover,a broad spectrum of studies indicates that the inter-individual response to chemotherapeutic treatments depends on both epigenetic modifications and genetic mutations occurring in colorectal cancer cells,thereby opening the way for a personalized medicine.Overall,combining genetic and epigenetic data might represent the most promising tool for a proper diagnostic,prognostic and therapeutic approach.
文摘Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmit- ted into daughter cells and through what mechanisms are currently under active investigation. Previ- ously, methylation was considered to be irreversible, but the recent discovery of histone lysine de- methylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, be- sides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent pro- gresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes.
文摘Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogeneoverexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a varietyof methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play impor-tant roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpGisland methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesisand its relevance of clinical implications.
基金This work is supported by the Excellent Youth Foundation of Sichuan Scientific Committee Grant in China(No.2019JDJQ0008)the National Major Scientific and Technological Special Project for“Significant New Drugs Development”of China(No.2018ZX09733001)the National Key Research and Development Program of China(No.2016YFA0201402).
文摘Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence.Epigenetic dysregulation is often linked to human disease,notably cancer.With the development of various drugs targeting epigenetic regulators,epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials.In this review,we summarize the aberrant functions of enzymes in DNA methylation,histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholar(No.81625024 to Bo Yang)the National Natural Science Foundation of China(No.81773754 to Ling Ding)
文摘Immunotherapy strategies targeting the programmed cell death ligand 1(PD-L1)/programmed cell death 1(PD-1)pathway in clinical treatments have achieved remarkable success in treating multiple types of cancer.However,owing to the heterogeneity of tumors and individual immune systems,PD-L1/PD-1 blockade still shows slow response rates in controlling malignancies in many patients.Accumulating evidence has shown that an effective response to anti-PD-Ll/anti-PD-1 therapy requires establishing an integrated immune cycle.Damage in any step of the immune cycle is one of the most important causes of immunotherapy failure.Impairments in the immune cycle can be restored by epigenetic modification,including reprogramming the environment of tumor-associated immunity,eliciting an immune response by increasing the presentation of tumor antigens,and by regulating T cell trafficking and reactivation.Thus,a rational combination of PD-L1/PD-1 blockade and epigenetic agents may offer great potential to retrain the immune system and to improve clinical outcomes of checkpoint blockade therapy.
基金ACKNOWLEDGEMENTS This work was supported by Hong Kong Research Grant Council (RGC) General Research Fund (HKU/7668/11M), RGC Collaborative Research Funds (HKU7/CRG/09, HKBU5/CRG/10 and HKU3/ CRF/11R), Hong Kong Theme-based Research Scheme fund (T12- 403/11), and grants from National Basic Research Program (973 Program) (No. 2012CB967001) and the National Natural Science Foundation of China (Grant Nos. 81272416 and 81172338).
文摘Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-poptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and IncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
基金This work was supported by the National Key R&D Program of China(2016YFA0100400 and 2018YFC1004000)and the National Natural Science Foundation of China(31721003,31820103009,31701262,81630035).
文摘Mammalian fertilization begins with the fusion of two specialized gametes,followed by major epigenetic remodeling leading to the formation of a totipotent embryo.During the development of the pre-implantation embryo,precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality,but the underlying molecular mechanisms remain elusive.For the past few years,unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development,taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies.The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals,including DNA methylation,histone modifications,chromatin accessibility and 3D chromatin organization.
文摘Although thousands of DNA damaging events occur in each cell every day,efficient DNA repair pathways have evolved to counteract them. The DNA repair machinery plays a key role in maintaining genomic stability by avoiding the maintenance of mutations. The DNA repair enzymes continuously monitor the chromosomes to correct any damage that is caused by exogenous and endogenous mutagens. If DNA damage in proliferating cells is not repaired because of an inadequate expression of DNA repair genes,it might increase the risk of cancer. In addition to mutations,which can be either inherited or somatically acquired,epigenetic silencing of DNA repair genes has been associated with carcinogenesis. Gastric cancer represents the second highest cause of cancer mortality worldwide. The disease develops from the accumulation of several genetic and epigenetic changes during the lifetime. Among the risk factors,Helicobacter pylori(H. pylori) infection is considered the main driving factor to gastric cancer development. Thus,in this review,we summarize the current knowledge of the role of H. pylori infection on the epigenetic regulation of DNA repair machinery in gastric carcinogenesis.