Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat...Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.展开更多
Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal va...Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.展开更多
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo...In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.展开更多
基金supported by the National Natural Science Foundation of China(Grant.No.31901400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant.No.2023YW09).
文摘Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
基金the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.
基金supported in part by the National Natural Science Foundation of China(51775385)the Natural Science Foundation of Shanghai(23ZR1466000)+3 种基金the Shanghai Industrial Collaborative Science and Technology Innovation Project(2021-cyxt2-kj10)the Innovation Program of Shanghai Municipal Education Commission(202101070007E00098)the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology of MOE(1221046)the Program to Cultivate Middle-Aged and Young Cadre Teacher of Jiangsu Province。
文摘In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.