The aim of the present experiments was to discern if the “entanglement”-like photon emissions from pairs of cell cultures or human brains separated by significant distances but sharing the same circling magnetic fie...The aim of the present experiments was to discern if the “entanglement”-like photon emissions from pairs of cell cultures or human brains separated by significant distances but sharing the same circling magnetic field could be demonstrated with a classic chemiluminescent reaction produced by hydrogen peroxide and hypochlorite. Simultaneous injection of the same amount of peroxide into a local dish (above a photomultiplier tube) and a dish 10 m away in a closed chamber produced a “doubling” of the durations of the photon spikes only when the two reactions were placed in the center of separate spaces around each of which magnetic fields were generated as accelerating group velocities containing decreasing phase modulations followed by decelerating group velocities embedded with increasing phase modulations. The duration of this “entanglement” was about 8 min. These results suggest that separate distances behave as if they were “the same space” if they are exposed to the same precise temporal configuration of magnetic fields with specific angular velocities.展开更多
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generati...The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies.These include quantum communications,computation,imaging,microscopy and many other novel technologies that are constantly being proposed.However,approaches to generating parallel multiple,customisable bi-and multi-entangled quantum bits(qubits)on a chip are still in the early stages of development.Here,we review recent advances in the realisation of integrated sources of photonic quantum states,focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology.These new and exciting platforms hold the promise of compact,low-cost,scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip,which will play a major role in bringing quantum technologies out of the laboratory and into the real world.展开更多
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu...The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GH...We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GHZ-like pure state or a lessentangled W-like state with known parameters,respectively.Our ECPs have some advantages.First,our ECPs work in a heralded way with linear-optical elements only,without the postselection based on nonlinear optics,far different from the previous ECPs.Second,they require only a copy of the less-entangled photon system in each round of the entanglement concentration process,not two copies,which decreases the difficulty of their implementation in experiment largely.Third,our ECPs avoid checking the photon number in the output modes of linear-optical elements with the sophisticated single-photon detectors.Moreover,all parties can operate the process for concentration simultaneously and independently,which leads to flexible operations and improves the performance greatly in experiment.These advantages make our ECPs useful in practical applications in long-distance quantum communication network.展开更多
Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating ...Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.展开更多
Recently,partially degenerate triple-photon states(TPS)generated by the third-order spontaneous parametric down-conversion have been observed in a superconducting cavity(2020,Phys.Rev.X 10,011011).Their non-Gaussian e...Recently,partially degenerate triple-photon states(TPS)generated by the third-order spontaneous parametric down-conversion have been observed in a superconducting cavity(2020,Phys.Rev.X 10,011011).Their non-Gaussian entanglement properties,characterized by a series of high-order covariance matrices,have also been theoretically revealed.Here,we use the non-Gaussian entanglement criterion proposed in(2021,Phy.Rev.Lett.127,150502)and the logarithmic negativity to study the effect of pump brightness,self-Kerr and cross-Kerr interactions on the entanglement of partially degenerate TPS(PDTPS).We find that the brighter the pump,the easier the entanglement of PDTPS leap to higher-order covariance matrices.Although both self-Kerr and cross-Kerr interactions induce nonlinear phase shifts and weaken the entanglement of PDTPS,cross-Kerr interactions can effectively raise the threshold of entanglement loaded on the third-order covariance matrix.These results can contribute to our understanding of the mechanism of the generation of unconditional non-Gaussian entanglement.展开更多
We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous param...We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.展开更多
The entangled coherent states(ECSs)have been widely used to realize quantum information processing tasks.However,the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel,which ...The entangled coherent states(ECSs)have been widely used to realize quantum information processing tasks.However,the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel,which may degrade the fidelity of ECSs.To overcome these obstacles,we present a measurement-based entanglement purification protocol(MBEPP)for ECSs to distill some highquality ECSs from a large number of low-quality copies.We first show the principle of this MBEPP without considering the photon loss.After that,we prove that this MBEPP is feasible to correct the error resulted from the photon loss.Additionally,this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications.This MBEPP may have application potential in the implementation of long-distance quantum communication.展开更多
Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-conve...Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-converter sources used in Bell experiments. However, this physical superposition is eliminated by wave propagation to spatially separated detectors. Bell correlations must therefore result from local waves, and the source boundary conditions of their previously entangled state. In the present model, Bell correlations are computed from disentangled separated waves, boundary conditions of nonlinear optics, and properties of single-photon and vacuum states specified by quantum electrodynamics. Transient interference is assumed between photon-excited waves and photon-empty waves based on the possibility of such interference found to be necessary by the designers of Bell-experiment sources. The present model employs local random variables without specifying underlying causality.展开更多
This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal f...This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.展开更多
This paper introduces two types of two-mode excited entangled coherent states (TMEECSs) ψ±((α,m,n)), studies their entanglement characteristics, and investigates the influence of photon excitations on qua...This paper introduces two types of two-mode excited entangled coherent states (TMEECSs) ψ±((α,m,n)), studies their entanglement characteristics, and investigates the influence of photon excitations on quantum entanglement. It shows that for the state (ψ+ (α, m, m)} the two-mode photon excitations affect seriously entanglement character while the state [ ψ-(α, m, m)) is always a maximally entangled state, and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements. It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.展开更多
We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exac...We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.展开更多
In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density...In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.展开更多
文摘The aim of the present experiments was to discern if the “entanglement”-like photon emissions from pairs of cell cultures or human brains separated by significant distances but sharing the same circling magnetic field could be demonstrated with a classic chemiluminescent reaction produced by hydrogen peroxide and hypochlorite. Simultaneous injection of the same amount of peroxide into a local dish (above a photomultiplier tube) and a dish 10 m away in a closed chamber produced a “doubling” of the durations of the photon spikes only when the two reactions were placed in the center of separate spaces around each of which magnetic fields were generated as accelerating group velocities containing decreasing phase modulations followed by decelerating group velocities embedded with increasing phase modulations. The duration of this “entanglement” was about 8 min. These results suggest that separate distances behave as if they were “the same space” if they are exposed to the same precise temporal configuration of magnetic fields with specific angular velocities.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Steacie Memorial Fellowship as well as through the Canada Research Chair Program and the MEIE in Quebecsupported through the Australian Research Council Discovery Projects programme(DP150104327)+4 种基金the support of the People Programme(Marie Curie Actions)of the European Union’s FP7 Programme under REA Grant Agreements No.627478(THREEPLE)the Australian Research Council(ARC)Centre of Excellence(CUDOS,CE110001018)Laureate Fellowship(FL120100029)the Discovery Early Career Researcher Award(DE120100226)programmessupport from the ITMO and Professorship Program(grant 074-U 01)and the 1000 Talents Sichuan Program.
文摘The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies.These include quantum communications,computation,imaging,microscopy and many other novel technologies that are constantly being proposed.However,approaches to generating parallel multiple,customisable bi-and multi-entangled quantum bits(qubits)on a chip are still in the early stages of development.Here,we review recent advances in the realisation of integrated sources of photonic quantum states,focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology.These new and exciting platforms hold the promise of compact,low-cost,scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip,which will play a major role in bringing quantum technologies out of the laboratory and into the real world.
文摘The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174039 and 11474026)the Program for New Century Excellent Talents in University(Grant No.NECT-11-0031)the Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(Grant No.SKLNST-2013-1-13)
文摘We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GHZ-like pure state or a lessentangled W-like state with known parameters,respectively.Our ECPs have some advantages.First,our ECPs work in a heralded way with linear-optical elements only,without the postselection based on nonlinear optics,far different from the previous ECPs.Second,they require only a copy of the less-entangled photon system in each round of the entanglement concentration process,not two copies,which decreases the difficulty of their implementation in experiment largely.Third,our ECPs avoid checking the photon number in the output modes of linear-optical elements with the sophisticated single-photon detectors.Moreover,all parties can operate the process for concentration simultaneously and independently,which leads to flexible operations and improves the performance greatly in experiment.These advantages make our ECPs useful in practical applications in long-distance quantum communication network.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0303700 and 2019YFA0308700)the National Natural Science Foundation of China(NSFC)(Nos.11874212,11890704,62035008,12004175,and 62175101)the Natural Science Foundation of Jiangsu Province(No.BK20200311)。
文摘Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.
基金the National Natural Science Foundation of China(12204293)Applied Basic Research Program in Shanxi Province(No.202203021212387)。
文摘Recently,partially degenerate triple-photon states(TPS)generated by the third-order spontaneous parametric down-conversion have been observed in a superconducting cavity(2020,Phys.Rev.X 10,011011).Their non-Gaussian entanglement properties,characterized by a series of high-order covariance matrices,have also been theoretically revealed.Here,we use the non-Gaussian entanglement criterion proposed in(2021,Phy.Rev.Lett.127,150502)and the logarithmic negativity to study the effect of pump brightness,self-Kerr and cross-Kerr interactions on the entanglement of partially degenerate TPS(PDTPS).We find that the brighter the pump,the easier the entanglement of PDTPS leap to higher-order covariance matrices.Although both self-Kerr and cross-Kerr interactions induce nonlinear phase shifts and weaken the entanglement of PDTPS,cross-Kerr interactions can effectively raise the threshold of entanglement loaded on the third-order covariance matrix.These results can contribute to our understanding of the mechanism of the generation of unconditional non-Gaussian entanglement.
基金supported by the National Cryptography Development Foundation of China(Grant No.MMJJ201401011)the Science and Technology Program of Guangzhou,China(Grant Nos.2013J4500095 and 2014J4100050)
文摘We propose a novel quantum key distribution scheme by using the SAM-OAM hybrid entangled state as the physical resource.To obtain this state,the polarization entangled photon pairs are created by the spontaneous parametric down conversion process,and then,the q-plate acts as a SAM-to-OAM transverter to transform the polarization entangled pairs into the hybrid entangled pattern,which opens the possibility to exploit the features of the higher-dimensional space of OAM state to encode information.In the manipulation and encoding process,Alice performs the SAM measurement by modulating the polarization stateπ lθx on one photon,whereas Bob modulates the OAM sector state lx' on the other photon to encode his key elements using the designed holograms which is implemented by the computer-controlled SLM.With coincidence measurement,Alice could extract the key information.It is showed that N-based keys can be encoded with each pair of entangled photon,and this scheme is robust against Eve’s individual attack.Also,the MUBs are not used.Alice and Bob do not need the classical communication for the key recovery.
基金supported by the National Natural Science Foundation of China under Grant No.11974189the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX20-0731.
文摘The entangled coherent states(ECSs)have been widely used to realize quantum information processing tasks.However,the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel,which may degrade the fidelity of ECSs.To overcome these obstacles,we present a measurement-based entanglement purification protocol(MBEPP)for ECSs to distill some highquality ECSs from a large number of low-quality copies.We first show the principle of this MBEPP without considering the photon loss.After that,we prove that this MBEPP is feasible to correct the error resulted from the photon loss.Additionally,this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications.This MBEPP may have application potential in the implementation of long-distance quantum communication.
基金the Science Research Foundation of Hunan Provincial Education Department (06C608)the 11th Five-year Plan for Key Construction Academic Subject (Optics) of Hunan Province
文摘Based on the Bell theorem, it has been believed that a theoretical computation of the Bell correlation requires explicit use of an entangled state. Such a physical superposition of light waves occurs in the down-converter sources used in Bell experiments. However, this physical superposition is eliminated by wave propagation to spatially separated detectors. Bell correlations must therefore result from local waves, and the source boundary conditions of their previously entangled state. In the present model, Bell correlations are computed from disentangled separated waves, boundary conditions of nonlinear optics, and properties of single-photon and vacuum states specified by quantum electrodynamics. Transient interference is assumed between photon-excited waves and photon-empty waves based on the possibility of such interference found to be necessary by the designers of Bell-experiment sources. The present model employs local random variables without specifying underlying causality.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025)Hunan Provincial Natural Science Foundation (Grant Nos 06JJ4003 and 06JJ2014)the Young Scientific Research Foundation of Hunan Provincial Education Department (Grand No 04B070)
文摘This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775048 and 10325523)the National Fundamental Research Program of China (Grant No 2007CB925204)the Funds from the Education Department of Hunan Province
文摘This paper introduces two types of two-mode excited entangled coherent states (TMEECSs) ψ±((α,m,n)), studies their entanglement characteristics, and investigates the influence of photon excitations on quantum entanglement. It shows that for the state (ψ+ (α, m, m)} the two-mode photon excitations affect seriously entanglement character while the state [ ψ-(α, m, m)) is always a maximally entangled state, and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements. It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174028)the Fundamental Research Funds for the Central Universities of China(Grant No.2011JBZ013)the Program for New Century Excellent Talents in University of China(Grant No.NCET-11-0564)
文摘We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.
基金supported by the Natural Science Foundation of China(Nos.11174224,11404246 and 11447225)the Natural Science Foundation of Shandong Province(Nos.ZR2013FM001,2013SJGZ10,BS2015DX015 and ZR2014JL029)the Science and Technology Development Program of Shandong Province(Nos.2011YD01049 and 2013YD01016)
文摘In this paper,by using the second-order parametric down-conversion of the nonlinear crystal,the spin-1 state is simulated by the two-photon polarization entangled modes. Through adjusting the laser pulse power density,the efficiency of second-order parametric down-conversion is enhanced. The intensity of the spin-1 state is 0.5/s. The fidelity of the state is up to F=0.891±0.002,and the contrast is C=17.3. The results provide a new method for Stern-Gerlach measurement on the spin-1 system.