为了实现对并网型光伏电站调度,提出了一种基于集合经验模态能分解(EEMD)与BP神经网络的短期光伏出力的组合预测模型。利用集合经验模态分解将光伏出力序列分解,得到本征模函数分量IMF和剩余分量Res,降低序列的非平稳性。采用游程检验...为了实现对并网型光伏电站调度,提出了一种基于集合经验模态能分解(EEMD)与BP神经网络的短期光伏出力的组合预测模型。利用集合经验模态分解将光伏出力序列分解,得到本征模函数分量IMF和剩余分量Res,降低序列的非平稳性。采用游程检验法优化因IMF分量数量多造成的建模过程复杂的问题,针对优化后的分量分别建立相应的BP神经网络预测模型。利用该方法对额定容量为40 k W的光伏系统进行预测,并与EMD-BP神经网络和传统的BP神经网络模型进行比较分析。结果表明,所提出的方法有效地提高了预测精度。展开更多
介绍了机载变排量变转速一体化电动静液作动器(EHA-VPVM,Electro-Hy-drostatic Actuator with Variable Pump displacement and Variable Motor speed)的系统结构,根据EHA-VPVM早期故障信号非平稳、时变等特点,采用一种新的时频分析方...介绍了机载变排量变转速一体化电动静液作动器(EHA-VPVM,Electro-Hy-drostatic Actuator with Variable Pump displacement and Variable Motor speed)的系统结构,根据EHA-VPVM早期故障信号非平稳、时变等特点,采用一种新的时频分析方法希尔伯特黄变换(HHT,Hilbert-Huang Transform)进行信号分析.针对HHT方法的模态混叠和虚假本征模态函数问题,提出两点改进:通过集合经验模式分解算法抑制模态混叠的发生;采用相关系数法保留真实本征模态函数.对EHA-VPVM工程样机进行早期故障诊断实验,用Hilbert边际谱和HHT谱分析永磁无刷直流电机两种工作状态下的振动信号.实验结果表明:改进HHT方法较好解决了HHT的模态混叠和虚假本征模态函数问题,能准确提取研究对象的早期故障特征,对EHA-VPVM早期故障具有良好的诊断效果.展开更多
文摘为了实现对并网型光伏电站调度,提出了一种基于集合经验模态能分解(EEMD)与BP神经网络的短期光伏出力的组合预测模型。利用集合经验模态分解将光伏出力序列分解,得到本征模函数分量IMF和剩余分量Res,降低序列的非平稳性。采用游程检验法优化因IMF分量数量多造成的建模过程复杂的问题,针对优化后的分量分别建立相应的BP神经网络预测模型。利用该方法对额定容量为40 k W的光伏系统进行预测,并与EMD-BP神经网络和传统的BP神经网络模型进行比较分析。结果表明,所提出的方法有效地提高了预测精度。
文摘介绍了机载变排量变转速一体化电动静液作动器(EHA-VPVM,Electro-Hy-drostatic Actuator with Variable Pump displacement and Variable Motor speed)的系统结构,根据EHA-VPVM早期故障信号非平稳、时变等特点,采用一种新的时频分析方法希尔伯特黄变换(HHT,Hilbert-Huang Transform)进行信号分析.针对HHT方法的模态混叠和虚假本征模态函数问题,提出两点改进:通过集合经验模式分解算法抑制模态混叠的发生;采用相关系数法保留真实本征模态函数.对EHA-VPVM工程样机进行早期故障诊断实验,用Hilbert边际谱和HHT谱分析永磁无刷直流电机两种工作状态下的振动信号.实验结果表明:改进HHT方法较好解决了HHT的模态混叠和虚假本征模态函数问题,能准确提取研究对象的早期故障特征,对EHA-VPVM早期故障具有良好的诊断效果.