文本情绪原因识别是情感分析中一个新的研究方向,旨在从文本中自动检测出导致某一情绪产生的原因。针对循环神经网络在长文中出现的长期依赖问题,本文提出了一种基于注意力机制和双向长短时记忆(attention model and bi-directional lon...文本情绪原因识别是情感分析中一个新的研究方向,旨在从文本中自动检测出导致某一情绪产生的原因。针对循环神经网络在长文中出现的长期依赖问题,本文提出了一种基于注意力机制和双向长短时记忆(attention model and bi-directional long short-term memory,AM-BiLSTM)神经网络模型的情绪原因识别方法。该方法采用字符向量表示文本语义信息,使用BiLSTM模型提取文本特征,该过程结合了人工提取的子句特征,在训练模型时,引入了注意力机制来优化模型性能,使用softmax对子句进行分类。实验结果表明本文方法对情绪原因的识别是有效的。展开更多
文摘文本情绪原因识别是情感分析中一个新的研究方向,旨在从文本中自动检测出导致某一情绪产生的原因。针对循环神经网络在长文中出现的长期依赖问题,本文提出了一种基于注意力机制和双向长短时记忆(attention model and bi-directional long short-term memory,AM-BiLSTM)神经网络模型的情绪原因识别方法。该方法采用字符向量表示文本语义信息,使用BiLSTM模型提取文本特征,该过程结合了人工提取的子句特征,在训练模型时,引入了注意力机制来优化模型性能,使用softmax对子句进行分类。实验结果表明本文方法对情绪原因的识别是有效的。