In this paper, we use monotone iterative techniques to show the existence of maximal or minimal solutions of some elliptic PDEs with nonlinear discontinuous terms. As the numerical analysis of this PDEs is concerned, ...In this paper, we use monotone iterative techniques to show the existence of maximal or minimal solutions of some elliptic PDEs with nonlinear discontinuous terms. As the numerical analysis of this PDEs is concerned, we prove the convergence of discrete extremal solutions.展开更多
We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) ...We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) · ? is a p-elliptic operator satisfying the assumptions of Theorem 1.1 then the LpDirichlet problem for the operator L_0 is solvable in the upper half-space Rn+. In this paper we prove that the Lpsolvability is stable under small perturbations of L_0. That is if L_1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L_0 and L_1 are sufficiently close in the sense of Carleson measures, then the LpDirichlet problem for the operator L_1 is solvable for the same value of p. As a corollary we obtain a new result on Lpsolvability of the Dirichlet problem for operators of the form L = div A(x)? + B(x) · ? where the matrix A satisfies weaker Carleson condition(expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiable and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoˇs,Petermichl and Pipher.展开更多
In this paper, we use the method of lines to convert elliptic and hyperbolic partial differential equations (PDEs) into systems of boundary value problems and initial value problems in ordinary differential equations ...In this paper, we use the method of lines to convert elliptic and hyperbolic partial differential equations (PDEs) into systems of boundary value problems and initial value problems in ordinary differential equations (ODEs) by replacing the appropriate derivatives with central difference methods. The resulting system of ODEs is then solved using an extended block Numerov-type method (EBNUM) via a block unification technique. The accuracy and speed advantages of the EBNUM over the finite difference method (FDM) are established numerically.展开更多
基金Partially supported by "one hundred distinguished young researcher fund program" of Sun Yat-Sen University
文摘In this paper, we use monotone iterative techniques to show the existence of maximal or minimal solutions of some elliptic PDEs with nonlinear discontinuous terms. As the numerical analysis of this PDEs is concerned, we prove the convergence of discrete extremal solutions.
文摘We establish a Dahlberg-type perturbation theorem for second order divergence form elliptic operators with complex coefficients. In our previous paper, we showed the following result: If L_0 = div A^0(x)? + B^0(x) · ? is a p-elliptic operator satisfying the assumptions of Theorem 1.1 then the LpDirichlet problem for the operator L_0 is solvable in the upper half-space Rn+. In this paper we prove that the Lpsolvability is stable under small perturbations of L_0. That is if L_1 is another divergence form elliptic operator with complex coefficients and the coefficients of the operators L_0 and L_1 are sufficiently close in the sense of Carleson measures, then the LpDirichlet problem for the operator L_1 is solvable for the same value of p. As a corollary we obtain a new result on Lpsolvability of the Dirichlet problem for operators of the form L = div A(x)? + B(x) · ? where the matrix A satisfies weaker Carleson condition(expressed in term of oscillation of coefficients). In particular the coefficients of A need no longer be differentiable and instead satisfy a Carleson condition that controls the oscillation of the matrix A over Whitney boxes. This result in the real case has been established by Dindoˇs,Petermichl and Pipher.
文摘In this paper, we use the method of lines to convert elliptic and hyperbolic partial differential equations (PDEs) into systems of boundary value problems and initial value problems in ordinary differential equations (ODEs) by replacing the appropriate derivatives with central difference methods. The resulting system of ODEs is then solved using an extended block Numerov-type method (EBNUM) via a block unification technique. The accuracy and speed advantages of the EBNUM over the finite difference method (FDM) are established numerically.