A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyr...A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.展开更多
A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a p...A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a palladium coated graphite tube with subsequent atomization and detection by AAS. The organoarsenicals include monomethylarsenic, dimethylarsenic, arsenobetaine, arsenocholine, o -aminobenzenarsenate and p -aminobenzenarsenate. The method is simple and sensitive. Detection limit was obtained from different arsenic compounds over the range from 0. 058 to 0.063 ng/ml as As (based on three times of the standard deviation of 10 blank measurements) and the relative standard deviations for ten replicate measurements were from 2.0 to 3.8%. The calibration curves of arsenic compounds including inorganic and organic arsenicals were linear over the range from 0.1 to 3.0 ng/ml as As. The recommended method has been applied to the determination of total arsenic in tap and lake water samples at ng/ml levels.展开更多
The online flow injection preconcentration and electrothermal atomic absorption spectrometry method were used for the determination of trace nickel in electrolytic manganese samples by sorption on a conical minicolumn...The online flow injection preconcentration and electrothermal atomic absorption spectrometry method were used for the determination of trace nickel in electrolytic manganese samples by sorption on a conical minicolumn packed with activated carbon at pH 9.0. The nickel was eluted from the minicolumn with 10%(v/v) nitric acid. An enrichment factor of 190-fold for a sample volume of 10mL was obtained. The detection limit (DL) of nickel with the use of the preconcentration method was 13ng·g -1in the original solid sample. The precision for 10 replicate determinations at 150ng·g -1 nickel concentration was 5.2% relative standard deviation (RSD). The calibration graph was linear with a correlation coefficient of r=0.9996 up to concentration of 660ng·g -1 nickel.展开更多
基金the Analysis and Testing Foundation of Zhejiang Province(No 04045)
文摘A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.
文摘A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a palladium coated graphite tube with subsequent atomization and detection by AAS. The organoarsenicals include monomethylarsenic, dimethylarsenic, arsenobetaine, arsenocholine, o -aminobenzenarsenate and p -aminobenzenarsenate. The method is simple and sensitive. Detection limit was obtained from different arsenic compounds over the range from 0. 058 to 0.063 ng/ml as As (based on three times of the standard deviation of 10 blank measurements) and the relative standard deviations for ten replicate measurements were from 2.0 to 3.8%. The calibration curves of arsenic compounds including inorganic and organic arsenicals were linear over the range from 0.1 to 3.0 ng/ml as As. The recommended method has been applied to the determination of total arsenic in tap and lake water samples at ng/ml levels.
文摘The online flow injection preconcentration and electrothermal atomic absorption spectrometry method were used for the determination of trace nickel in electrolytic manganese samples by sorption on a conical minicolumn packed with activated carbon at pH 9.0. The nickel was eluted from the minicolumn with 10%(v/v) nitric acid. An enrichment factor of 190-fold for a sample volume of 10mL was obtained. The detection limit (DL) of nickel with the use of the preconcentration method was 13ng·g -1in the original solid sample. The precision for 10 replicate determinations at 150ng·g -1 nickel concentration was 5.2% relative standard deviation (RSD). The calibration graph was linear with a correlation coefficient of r=0.9996 up to concentration of 660ng·g -1 nickel.