Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductan...Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.展开更多
Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused incr...Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.展开更多
Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the re...Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.展开更多
文摘Seasonal changes in the photosynthetic characteristics of Ammopiptantus mongolicus (Maxim. )Chen f. were studied. When the net photosynthetic rate decreased with the elevation of air temperature, thestomatal conductance and stomatal limitation value tended to decline simultaneously, while the interoellularCO2 concentration was increased. According to the two criteria discriminating the stomatal limitation of Photosynthesis suggeSted by Fmrquhar and Sharkey, the seasonal changes in these parameters indicated that the decrease in Pn may not be due to stomatal factor. These studies proved that the relative contents of the large subunit of Rubisco and the photochemical activities correlated with the seasonal changes in the net photosyntheticrate, whieh may show that these two factors contribute primarily to the seasonal changeS in CO2 assimilation.
文摘Spraying 1-2 mmol/L solution of NaHSO 3 on rice ( Oryza sativa L.) leaves resulted in the enhancement of net photosynthetic rate for more than three days. It was also observed that NaHSO 3 application caused increases both in ATP content in leaves and the millisecond_delayed light emission of leaves. The increase in net photosynthetic rate caused by NaHSO 3 treatment was similar to that by PMS (phenazine methosulfate) treatment. The grain yield of treated rice was enhanced approximately by 10% after duplicated application of NaHSO 3 in milk_ripening stage. It is suggested that the enhancement of photosynthesis by NaHSO 3 treatment resulted from the effect of increasing ATP supplement. Concomitant with an increase in the photosynthetic rate and ATP content in leaves, the transient increase in chlorophyll fluorescence after the termination of actinic light, which could be used as an index of the cyclic electron flow, was also enhanced by low concentration of NaHSO 3 treatment. Basing on these results it is proposed that the increase in rice photosynthesis caused by low concentrations of NaHSO 3 could be due to the stimulation of the cyclic electron flow around PSⅠ which in turn the enhancement of the coupled photophosphorylation and photosynthesis.
基金supported by the Special Fund for Nonprofit Industry (Agriculture) Research Project (201303014)Earmarked Fund for Beijing Fruit Vegetable Innovation Team Project of Modern Agro-industry Technology Research System (GCTDZJ2014033007) in China
文摘Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.