期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LiNi0.5Mn1.5O4正极材料表面的双电子能量损失谱谱学成像 被引量:3
1
作者 李亚东 邓玉峰 +3 位作者 潘智毅 魏印平 赵世玺 干林 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第11期2293-2300,共8页
研究锂离子电池电极材料中的化学结构、尤其是Li元素的分布和过渡金属元素的价态分布对理解锂离子电池的电池性能具有重要的意义。尽管电子能量损失谱(EELS)具有对轻元素敏感的特点,但利用EELS观察锂离子电池正极材料中Li这一周期表中... 研究锂离子电池电极材料中的化学结构、尤其是Li元素的分布和过渡金属元素的价态分布对理解锂离子电池的电池性能具有重要的意义。尽管电子能量损失谱(EELS)具有对轻元素敏感的特点,但利用EELS观察锂离子电池正极材料中Li这一周期表中最轻的固体元素一直是个挑战。这不仅是由于EELS谱中锂K边与过渡金属M边存在部分重叠,还由于锂离子电池材料的尺寸普遍较大使得EELS分析中复散射的影响变大,影响了Li定量分析的准确性。本文以LiNi_(0.5)Mn_(1.5)O_4(LNMO)正极材料为例,利用扫描透射电子显微镜(STEM)下的双电子能量损失谱仪(Dual EELS)谱学成像技术,获取了LNMO中较为精确的Li、Mn及Ni分布图,并进一步获得了Mn/Ni的价态分布图。结合STEM原子序数衬度像表明,LNMO表面1–2nm深度范围内具有富Mn/Ni而缺Li的特征,且表面Mn(+2)相对于体相Mn(+4)的价态偏低。由于低价态的Mn^(2+)在电解液中的溶解是造成电池容量衰减的重要原因,我们的结果表明在LNMO材料合成中消除材料表面富集的低价态Mn^(2+)可能是将来减小其容量衰减的可行途径。 展开更多
关键词 锂离子电池 锂元素分布 价态分布 电子能量损失谱 谱学成像
下载PDF
Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4 被引量:1
2
作者 Yujia Liang Wei Wu +3 位作者 Peng Wang Sz-Chian Liou Dongxia Liu Sheryl H. Ehrman 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4049-4061,共13页
Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C--O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficien... Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C--O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts. 展开更多
关键词 spray drying artificial photosynthesis C02 photoreduction electron energy lossspectroscopy (EELS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部