Pseudocapacitive materials generally offer both high capacitance and high rate capability, which has stimulated great efforts in developing the materials system and related energy storage devices. In recent years, how...Pseudocapacitive materials generally offer both high capacitance and high rate capability, which has stimulated great efforts in developing the materials system and related energy storage devices. In recent years, however, with the extensive use of nanomaterials in batteries, fast redox kinetics comparable to pseudocapacitive have been achieved in many kinds of battery materials due to the much shortened ion diffusion lengths and highly exposed surface/interface as a result of nanosize effect. Consequently, the terms"pseudocapacitive materials" and "battery materials" are becoming more and more confusing. In this review, different opinions on the definition of pseudocapacitive materials and the evolution of the definitions as well as the resulting confusion will be firstly reviewed. Then, to accurately distinguish pseudocapacitive and battery materials, method with the consideration of both the electrochemical signatures(CVs and GCD) and quantitative kinetics analysis as a supplement is proposed. Finally, we end this review by discussing the possible device configurations of asymmetric supercapacitors and hybrid supercapacitors. The present review will help understanding the differences between pseudocapacitive materials and battery materials, and thus avoiding the definition confusion.展开更多
La-Mg-Ni-Mn-based AB2-type La(1–x)CexMgNi(3.5)Mn(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated t...La-Mg-Ni-Mn-based AB2-type La(1–x)CexMgNi(3.5)Mn(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated that the experimental alloys consisted of a major phase LaMgNi4 and a secondary phase LaNi5. With spinning rate growing, the abundance of LaMgNi4 phase increased and that of LaNi5 phase decreased. Moreover, with the melt spinning rate increasing, both the lattice constants and cell volumes increased, and further accelerated the grains refinement of the alloys. The electrochemical tests showed that the as-spun alloys possessed excellent capability of activation, achieving the maximum discharge capacities just at the first cycling without any activation needed. As for the as-spun alloys, its discharge potential characteristics could be improved obviously by adopting the technology of melt spinning. In addition, the melt spinning raised electrochemical cycle stability of the alloys, the main reason was that the melt spinning enhanced the anti-pulverization ability of the alloys. With spinning rate increasing, the discharge capacity of the alloys presented a tendency to increase firstly then decrease. Moreover, the electrochemical kinetics of the alloys showed the same trend under fixed condition.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface ...Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.展开更多
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects f...Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.展开更多
MoSe_(2),with high theoretical specific capacity,has attracted a lot of attention.There remains an open challenge to effectively suppress the irreversible selenium dissolution and rapid capacity decrease induced by se...MoSe_(2),with high theoretical specific capacity,has attracted a lot of attention.There remains an open challenge to effectively suppress the irreversible selenium dissolution and rapid capacity decrease induced by severe volume change during cycling.Herein,we synthesize MoSe_(2)nanoflowers dispersed on one-dimensional(1D)N-doped carbon nanofibers(MoSe_(2)@NCNFs)for use as a freestanding electrode.In this unique structure,the 1D N-doped carbon nanofibers are found to not only enhance the conductivity but also ensure the structural integrity during the Li^(+)/Na^(+)insertion/destraction processes.As expected,at 2 A·g^(-1),the specific capacity of the MoSe_(2)@NCNFs is maintained at 180 mAh·g^(-1)after 500 cycles when used in lithium storage applications.Furthermore,in the case of sodium storage,at 1 A·g^(-1),the MoSe_(2)@NCNFs shows a capacity of 122mAh·g^(-1)after 500 cycles.These findings suggest that the MoSe_(2)@NCNF electrodes may be a promising candidate for use in reversible Li/Na storage applications.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.51672205,51872104 and 21673169)the National Key R&D Program of China(Grant No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(WUT:2016IVA083,2017IB005,185220011)
文摘Pseudocapacitive materials generally offer both high capacitance and high rate capability, which has stimulated great efforts in developing the materials system and related energy storage devices. In recent years, however, with the extensive use of nanomaterials in batteries, fast redox kinetics comparable to pseudocapacitive have been achieved in many kinds of battery materials due to the much shortened ion diffusion lengths and highly exposed surface/interface as a result of nanosize effect. Consequently, the terms"pseudocapacitive materials" and "battery materials" are becoming more and more confusing. In this review, different opinions on the definition of pseudocapacitive materials and the evolution of the definitions as well as the resulting confusion will be firstly reviewed. Then, to accurately distinguish pseudocapacitive and battery materials, method with the consideration of both the electrochemical signatures(CVs and GCD) and quantitative kinetics analysis as a supplement is proposed. Finally, we end this review by discussing the possible device configurations of asymmetric supercapacitors and hybrid supercapacitors. The present review will help understanding the differences between pseudocapacitive materials and battery materials, and thus avoiding the definition confusion.
基金Project supported by National Natural Science Foundation of China(51161015,51371094,51471054)
文摘La-Mg-Ni-Mn-based AB2-type La(1–x)CexMgNi(3.5)Mn(0.5)(x=0–0.4) alloys were prepared by melt spinning technology. The detections of X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated that the experimental alloys consisted of a major phase LaMgNi4 and a secondary phase LaNi5. With spinning rate growing, the abundance of LaMgNi4 phase increased and that of LaNi5 phase decreased. Moreover, with the melt spinning rate increasing, both the lattice constants and cell volumes increased, and further accelerated the grains refinement of the alloys. The electrochemical tests showed that the as-spun alloys possessed excellent capability of activation, achieving the maximum discharge capacities just at the first cycling without any activation needed. As for the as-spun alloys, its discharge potential characteristics could be improved obviously by adopting the technology of melt spinning. In addition, the melt spinning raised electrochemical cycle stability of the alloys, the main reason was that the melt spinning enhanced the anti-pulverization ability of the alloys. With spinning rate increasing, the discharge capacity of the alloys presented a tendency to increase firstly then decrease. Moreover, the electrochemical kinetics of the alloys showed the same trend under fixed condition.
基金supported by the National Natural Science Foundation of China(No.51972023)。
文摘Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.
基金supported by the National Natural Science Foundation of China (21573083)1000 Young Talent (to Deli Wang)the Innovation Research Funds of HuaZhong University of Science and Technology (2017KFYXJJ164)。
文摘Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices.
基金supported by the National Natural Science Foundation of China (No.52102296)the Guangzhou Municipal Science and Technology Bureau (No.202102020055)+2 种基金the Science and Technology Program of Guangzhou (No.2019050001)the Outstanding Youth Project of Guangdong Natural Science Foundation (No.2021B1515020051)the Yunnan Expert Workstation (No.202005AF150028)。
文摘MoSe_(2),with high theoretical specific capacity,has attracted a lot of attention.There remains an open challenge to effectively suppress the irreversible selenium dissolution and rapid capacity decrease induced by severe volume change during cycling.Herein,we synthesize MoSe_(2)nanoflowers dispersed on one-dimensional(1D)N-doped carbon nanofibers(MoSe_(2)@NCNFs)for use as a freestanding electrode.In this unique structure,the 1D N-doped carbon nanofibers are found to not only enhance the conductivity but also ensure the structural integrity during the Li^(+)/Na^(+)insertion/destraction processes.As expected,at 2 A·g^(-1),the specific capacity of the MoSe_(2)@NCNFs is maintained at 180 mAh·g^(-1)after 500 cycles when used in lithium storage applications.Furthermore,in the case of sodium storage,at 1 A·g^(-1),the MoSe_(2)@NCNFs shows a capacity of 122mAh·g^(-1)after 500 cycles.These findings suggest that the MoSe_(2)@NCNF electrodes may be a promising candidate for use in reversible Li/Na storage applications.