Combining with the characteristic of the fuzzy control and the neural networkcontrol(NNC), a new kind of the fuzzy neural network controller is proposed, and the synthesisdesign method of the control law and fast spee...Combining with the characteristic of the fuzzy control and the neural networkcontrol(NNC), a new kind of the fuzzy neural network controller is proposed, and the synthesisdesign method of the control law and fast speed learning algorithm of the parameters of networks areput forward. The output of the controller is composed of two parts, part one is derived on basis ofthe principle of sliding control, the lower order model and the estimated parameters of the plantare only required, part two is derived on basis FNN, it is used to compensate the uncertainties ofthe systems. Because new type of FNN controller extracts from the advantages of the intelligentcontrol and model based sliding mode control, the numbers of adjusting parameters and the structureof FNN are simplified at large, and the practical significance and variation range are attached toeach layer of the network and its connected weights, the control performance and learning speed areincreased at large. The Tightness of the conclusions is verified by the experiment of anelectro-hydraulic position servo system of the mold of the continuous casting machinery.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59975003).
文摘Combining with the characteristic of the fuzzy control and the neural networkcontrol(NNC), a new kind of the fuzzy neural network controller is proposed, and the synthesisdesign method of the control law and fast speed learning algorithm of the parameters of networks areput forward. The output of the controller is composed of two parts, part one is derived on basis ofthe principle of sliding control, the lower order model and the estimated parameters of the plantare only required, part two is derived on basis FNN, it is used to compensate the uncertainties ofthe systems. Because new type of FNN controller extracts from the advantages of the intelligentcontrol and model based sliding mode control, the numbers of adjusting parameters and the structureof FNN are simplified at large, and the practical significance and variation range are attached toeach layer of the network and its connected weights, the control performance and learning speed areincreased at large. The Tightness of the conclusions is verified by the experiment of anelectro-hydraulic position servo system of the mold of the continuous casting machinery.