期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nonlinear analysis of r.c. framed buildings retrofitted with elastomeric and friction bearings under near-fault earthquakes
1
作者 Mirko Mazza 《Earthquake Science》 CSCD 2015年第5期365-377,共13页
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, th... Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the super- structure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical inves- tigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber beatings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal com- ponents of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high val- ues of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expecte 展开更多
关键词 R.c. base-isolated structures elastomericbearings Friction bearings Nonlinear dynamic analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部