通过变分方法在光滑有界域Ω上研究由常数a,b>0,参数λ>0及连续函数f(x,u)共同决定的非局部问题:{-(a-b integral from Ω|▽u|~2dx)Δu+bλu^3=f(x,u)x∈Ω u=0 x∈Ω利用Ekeland变分原理和山路引理得到该问题近共振情形多重...通过变分方法在光滑有界域Ω上研究由常数a,b>0,参数λ>0及连续函数f(x,u)共同决定的非局部问题:{-(a-b integral from Ω|▽u|~2dx)Δu+bλu^3=f(x,u)x∈Ω u=0 x∈Ω利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.展开更多
By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio...By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.展开更多
In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances....In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.展开更多
考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引...考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在λ_*>0,使得:(ⅰ)当λ∈(0,λ_*)时,该非局部问题至少有3个不同的解;(ⅱ)当λ=λ_*时,该非局部问题至少有2个不同的解;(ⅲ)当λ>λ_*时,该非局部问题至少有1个解.展开更多
The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framewor...The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.展开更多
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne...By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.展开更多
基金Supported by the National Natural Science Foundation of China(10871141)
文摘By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.
文摘考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在λ_*>0,使得:(ⅰ)当λ∈(0,λ_*)时,该非局部问题至少有3个不同的解;(ⅱ)当λ=λ_*时,该非局部问题至少有2个不同的解;(ⅲ)当λ>λ_*时,该非局部问题至少有1个解.
基金the National Basic Research Program of China (973 Program, No. 2007CB814900)the Natural Science Foundation of China (10671112)+1 种基金Shandong Province (Z2006A01)the New Century Excellent Young Teachers Program of Education Ministry of China
文摘The authors get a maximum principle for one kind of stochastic optimization problem motivated by dynamic measure of risk. The dynamic measure of risk to an investor in a financial market can be studied in our framework where the wealth equation may have nonlinear coefficients.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.