The interaction of oblique incident waves with infinite number of perforated caissons is investigated. The fluid domain is divided into infinite sub-domains by the caissons, and eigen-function expansion is applied to ...The interaction of oblique incident waves with infinite number of perforated caissons is investigated. The fluid domain is divided into infinite sub-domains by the caissons, and eigen-function expansion is applied to expand velocity potentials in each domain. A phase relation is introduced for wave oscillation in each caisson, and the structure geometry is considered in constructing the models of reflection waves. The reflected waves with the present analysis include all of the waves traveling in different directions when incident wave period is short. Numerical examinations show that velocities at the inner and outer sides of the front walls of caissons ase close to each other, and reflection coefficients satisfy the energy conservation relation very well when porous effect parameter is infinite. Numerical results show that the reflection coefficients of oblique incident waves are smaller for shorter caissons at low frequency, and decrease with the increase of wave incident angle.展开更多
Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in te...Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.展开更多
Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are e...Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of shearing force is formulated by trigonometric series and used to determine the coefficients in above expansions. The computational resuits give the chord and span wise distributions of nomal and shear stress in the cover plate and the honeycomb core. At the same time, the attenuation of additional stress from fixed end to free end along the length of beam is shown clearly.展开更多
Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are e...Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.展开更多
文摘The interaction of oblique incident waves with infinite number of perforated caissons is investigated. The fluid domain is divided into infinite sub-domains by the caissons, and eigen-function expansion is applied to expand velocity potentials in each domain. A phase relation is introduced for wave oscillation in each caisson, and the structure geometry is considered in constructing the models of reflection waves. The reflected waves with the present analysis include all of the waves traveling in different directions when incident wave period is short. Numerical examinations show that velocities at the inner and outer sides of the front walls of caissons ase close to each other, and reflection coefficients satisfy the energy conservation relation very well when porous effect parameter is infinite. Numerical results show that the reflection coefficients of oblique incident waves are smaller for shorter caissons at low frequency, and decrease with the increase of wave incident angle.
文摘Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.
文摘Restrained bending of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of shearing force is formulated by trigonometric series and used to determine the coefficients in above expansions. The computational resuits give the chord and span wise distributions of nomal and shear stress in the cover plate and the honeycomb core. At the same time, the attenuation of additional stress from fixed end to free end along the length of beam is shown clearly.
文摘Restrained torsion of thin-walled box beam with honeycomb core is analyzed on the basis of rigid profile assumption. The method of variable separation is applied and two ordinary differential governing equations are established and solved. The boundary conditions are satisfied rigorously and the solutions are expressed by means of eigen function expansions. The diagram of torque is formulated by trigonometric series and used to determine the coefficients in above expansions. The results of computation provide the chord-wise and span-wise distributions of normal and shear stress in the face plate along with shear stress in the honeycomb core.