For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to bet...For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to better match the annular mode field distribution of the vortex beam. The fiber structure was analyzed and calculated by COMSOL Multiphysics 5.4 finite element software, and the characteristics of fiber were analyzed, such as the dispersion, confinement loss, effective mode area and nonlinear coefficient. The results reveal that the photonic crystal fiber structure capable of carrying 50 orbital angular momentum (OAM) modes at the wavelength of 1.15 to 2.0 μm (850 nm). The effective refractive index difference Δneff between vector modes can reach 1 × 10-3, and larger difference can effectively separate the vector modes and improve the transmission performance of OAM modes. Moreover, the fiber has good performance, such as flat dispersion distribution of the low-order modes, low confinement loss below 10-9 dB·m-1, large effective mode field area and small nonlinear coefficient in the 850 nm wavelength range. Therefore, this fiber structure can be applied to the high-capacity communication system of fiber multiplexing OAM. In addition, the good characteristics of this fiber structure are of great significance for the transmission of vortex beam in fiber.展开更多
文摘For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to better match the annular mode field distribution of the vortex beam. The fiber structure was analyzed and calculated by COMSOL Multiphysics 5.4 finite element software, and the characteristics of fiber were analyzed, such as the dispersion, confinement loss, effective mode area and nonlinear coefficient. The results reveal that the photonic crystal fiber structure capable of carrying 50 orbital angular momentum (OAM) modes at the wavelength of 1.15 to 2.0 μm (850 nm). The effective refractive index difference Δneff between vector modes can reach 1 × 10-3, and larger difference can effectively separate the vector modes and improve the transmission performance of OAM modes. Moreover, the fiber has good performance, such as flat dispersion distribution of the low-order modes, low confinement loss below 10-9 dB·m-1, large effective mode field area and small nonlinear coefficient in the 850 nm wavelength range. Therefore, this fiber structure can be applied to the high-capacity communication system of fiber multiplexing OAM. In addition, the good characteristics of this fiber structure are of great significance for the transmission of vortex beam in fiber.