集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基...集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过"回忆与遗忘"机制,不仅使历史上有用的基分类器因记忆强度高而保存在"记忆库"中,提高预测的稳定性,而且从"记忆库"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的"回忆"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响.展开更多
心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机...心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。展开更多
文摘集成式数据流挖掘是对存在概念漂移的数据流进行学习的重要方法.针对传统集成式数据流挖掘存在的缺陷,将人类的回忆和遗忘机制引入到数据流挖掘中,提出基于记忆的数据流挖掘模型MDSM(memorizing based data stream mining).该模型将基分类器看作是系统获得的知识,通过"回忆与遗忘"机制,不仅使历史上有用的基分类器因记忆强度高而保存在"记忆库"中,提高预测的稳定性,而且从"记忆库"中选取当前分类效果好的基分类器参与集成预测,以提高对概念变化的适应能力.基于MDSM模型,提出了一种集成式数据流挖掘算法MAE(memorizing based adaptive ensemble),该算法利用Ebbinghaus遗忘曲线对系统的遗忘机制进行设计,并利用选择性集成来模拟人类的"回忆"机制.与4种典型的数据流挖掘算法进行比较,结果表明:MAE算法分类精度高,对概念漂移的整体适应能力强,尤其对重复出现的概念漂移以及实际应用中存在的复杂概念漂移具有很好的适应能力.不仅能够快速适应新的概念变化,并且能够有效抵御随机的概念波动对系统性能的影响.
文摘心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。