We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantl...We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic sta-tions close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north.展开更多
An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, w...An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.展开更多
The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the p...The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.展开更多
The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and af...The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.展开更多
On April 20, 2013, the Lushan M^7.0 earthquake struck at the southern part of the Longmenshan fault in the eastern Tibetan Plateau, China. The shear-wave splitting in the crust indicates a connection between the direc...On April 20, 2013, the Lushan M^7.0 earthquake struck at the southern part of the Longmenshan fault in the eastern Tibetan Plateau, China. The shear-wave splitting in the crust indicates a connection between the direction of the principal crustal com- pressive stress and the fault orientation in the Longmenshan fault zone. Our relocation analysis of the aftershocks of the Lushan earthquake shows a gap between the location of the rupture zone of the Lushan Ms7.0 earthquake and that of the rup- ture zone of the Wenchuan MsS.0 earthquake. We believe that stress levels in the crust at the rupture gap and its vicinity should be monitored in the immediate future. We suggest using controlled source borehole measurements for this purpose.展开更多
基金the Basic Research Project of Institute of Geophysics, China Earth-quake Administration (Grant No. DQJB08Z03)
文摘We relocated M8.0 Wenchuan earthquake and 2706 aftershocks with M≥2.0 using double-difference algorithm and obtained relocations of 2553 events. To reduce the influence of lateral variation in crustal and upper mantle velocity structure, we used different velocity models for the east and west side of Longmenshan fault zone. In the relocation process, we added seismic data from portable seismic sta-tions close to the shocks to constrain focal depths. The precisions in E-W, N-S, and U-D directions after relocation are 0.6, 0.7, and 2.5 km respectively. The relocation results show that the aftershock epi-centers of Wenchuan earthquake were distributed in NE-SW direction, with a total length of about 330 km. The aftershocks were concentrated on the west side of the central fault of Longmenshan fault zone, excluding those on the north of Qingchuan, which obviously deviated from the surface fault and passed through Pingwu-Qingchuan fault in the north. The dominant focal depths of the aftershocks are between 5 and 20 km, the average depth is 13.3 km, and the depth of the relocated main shock is 16.0 km. The depth profile reveals that focal depth distribution in some of the areas is characterized by high-angle westward dipping. The rupture mode of the main shock features reverse faulting in the south, with a large strike-slip component in the north.
基金supported by National Natural Science Foundation of China(Nos.40974201 and 40774044)to J.Lei
文摘An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.
文摘The double-difference earthquake relocation algorithm (DD algorithm) has been applied to the accurate relocation of 10057 earthquakes in the central-western China (21°-36°N, 98°-112E°) during the period of 1992-1999. In total, 79706 readings for P waves and 72169 readings for S waves were used in the relocation, and the source parameters of 6496 events were obtained. The relocation results revealed a more complete picture of the hypocentral distribution in the central-western China. In several seismic belts the relocated epicenters present a more defined lineation feature, reflecting the close correlation between the seismicity and the active tectonic structures. The relocated focal depths confirmed that most earthquakes (91 percent of the 6496 relocated events) in the central-western China were located at shallower depths not deeper than 20 km. The distribution of focal depths indicates that the seismogenic layer in the central-western China is located in the upper-mid crust with its thickness no deeper than 20 km.
基金Key Project Process Mechanism and Prediction of Geological Hazards (2001CB711005-1-3) and State Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040702). sponsored by the Ministry of Science and Techno
基金jointly funded by the National Key Research and Development Program of China (No. 2021YFC3000702)the Special Fund of the Institute of Geophysics, China Earthquake Administration (No. DQJB21Z05)the National Natural Science Foundation of China (No. 41804062)
文摘The 2022 Menyuan M_(S)6.9 earthquake,which occurred on January 8,is the most destructive earthquake to occur near the Lenglongling(LLL)fault since the 2016 Menyuan M_(S)6.4 earthquake.We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method.The total length and width of the aftershock sequence are approximately 32 km and 5 km,respectively,and the aftershocks are mainly concentrated at a depth of 7-12 km.The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock,where aftershocks are sparse.The east and west fault structures revealed by aftershock locations differ significantly.The west fault strikes EW and inclines to the south at a 71°-90°angle,whereas the east fault strikes 133°and has a smaller dip angle.Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes.Based on surface traces of faults,the distribution of relocated earthquake sequence and surface ruptures,the mainshock was determined to have occurred at the conjunction of the Tuolaishan(TLS)fault and LLL fault,and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault,respectively.Aftershocks migrate in the early and late stages of the earthquake sequence.In the first 1.5 h after the mainshock,aftershocks expand westward from the mainshock.In the late stage,seismicity on the northeast side of the east fault is higher than that in other regions.The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41174042, 41040034)the China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201008001)
文摘On April 20, 2013, the Lushan M^7.0 earthquake struck at the southern part of the Longmenshan fault in the eastern Tibetan Plateau, China. The shear-wave splitting in the crust indicates a connection between the direction of the principal crustal com- pressive stress and the fault orientation in the Longmenshan fault zone. Our relocation analysis of the aftershocks of the Lushan earthquake shows a gap between the location of the rupture zone of the Lushan Ms7.0 earthquake and that of the rup- ture zone of the Wenchuan MsS.0 earthquake. We believe that stress levels in the crust at the rupture gap and its vicinity should be monitored in the immediate future. We suggest using controlled source borehole measurements for this purpose.