On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on ana...On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south.展开更多
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on t...Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.展开更多
This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near th...This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.展开更多
基金supported by the National Natural Science Foundation of China(40940020,40874006)National Key Laboratory of Earthquake Dynamics(LED2010A02,LED2008A06)
文摘On 21 March 2008, a Ms7.3 earthquake occurred at Quickbird, Yutian County, Xinjiang. We attempt to reveal the features of the causative fault of this shock and its coseismic deformation field. Our work is based on analysis and interpretation to high-resolution satellite images as well as differential interferometric synthetic aperture radar (D-InSAR) data from the satellite Envisat SAR, coupled with seismicity, focal mechanism solutions and active tectonics in this region. The result shows that the 40 km-long, nearly NS trending surface rupture zone by this event lies on a range-front alluvial platform in Qira County. It is characterized by distinct linear traces and simple structure with 1-3-m-wide individual seams and maximum 6.5 m width of a collapse fracture. Along the rupture zone many secondary fractures and fault-bounded blocks are seen, exhibiting remarkable extension. The eoseismic deformation affected a large area 100~100 km2. D-InSAR analysis indicates that the interferometric deformation field is dominated by extensional faulting with a small strike-slip component. Along the causative fault, the western wall fell down and the eastern wall, that is the active unit, rose up, both with westerly vergence. Because of the big deformation gradients near the seismogenic fault, no interference fringes are seen on images, and what can be determined is a vertical displacement 70 cm or more between the two fault walls. According to the epicenter and differential occurrence times from the National Earthquake Information Center, China Earthquake Network Center, Harvard and USGS, it is suggested that the seismic fault ruptured from north to south.
基金the National Natural Science Foundation of China (Grant No. 40474037)the National Basic Research Program of China (Grant No. 2004CB418401)
文摘Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earth- quake (Mw7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transten- sional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the Mw=6.8, Mw=6.2 and Mw≤7.8 events, respec- tively. The Mw≤7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earth- quake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks de- pends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface rup- tures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Ba- yan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction.
基金supported by the Youth Seismic Regime Tracking Project in the Year of 2016,China Earthquake Administration(2016010217)the Special Earthquake Research Project granted by the China Earthquake Administration(201508009)
文摘This study analyzes data regarding cross-fault deformations within the seismogenic zone of the 2016 Qinghai Menyuan Ms6.4 earthquake and its surrounding area. The results showed that the tendency anomaly sites near the epicenter had relatively long anomaly durations prior to the earthquake, while sudden-jumping anomaly sites started to increase in the middle eastern Qilian Mountains approximately a year before the earthquake and continued to increase and migrate towards the vicinity of the epicenter two to six months before the earthquake. Intensive observations a few days after the earthquake indicated that abnormal returns and turns before the earthquake were significant, but all had small amplitudes, and the coseismic effect was generally minor. In addition, the post-seismic tendency analysis of individual cross faults in the Qilian Mountain fault zone revealed an accelerating thrust tendency at all cross-fault sites in the middle Qilian Mountains after the 2008 Wenchuan Ms8.0 earthquake. This indicates that the Wenchuan mega-earthquake exerted a great impact on the dynamic environment of the northeastern margin of the Qinghai-Tibet plate and significantly enhanced the extrusion effect of the Indian plate on the middle Qilian Mountains, generating favorable conditions for the occurrence of Menyuan thrust earthquakes.