经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应...经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。展开更多
Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by N...Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.展开更多
文摘经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。
基金This study is supported by the National Natural Science Foundation of China(NSFC)under contract Nos 49790010,40076010 and 49634140,National Key Basic Research and Development Plan in China under contract No.G1999043701)and the OCEAN-863 Project of China.
文摘Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.