Summary It was noted that circadian components function in plant adaptation to diurnal temperature cycles and freezing tolerance. Our genome-wide transcriptome analysis revealed that evening-phased COR27 and COR28 mai...Summary It was noted that circadian components function in plant adaptation to diurnal temperature cycles and freezing tolerance. Our genome-wide transcriptome analysis revealed that evening-phased COR27 and COR28 mainly repress the transcription of clockassociated evening genes PRRS, ELF4 and cold-responsive genes. Chromatin immunoprecipitation indicated that CCAI is recruited to the site containing EE elements of COR27 and COR28 promoters in a temperaturedependent way. Further genetic analysis shows COR28 is essential for the circadian function of PRR9 and PRRT. Together, our results support a role of COR27 and COR28 as nighttime repressors integrating circadian clock and plant cold stress responses.展开更多
基金supported by grants from the National Science Foundation of China (31170265)the Program for New Century Excellent Talents in University of the Ministry of Education of China (NCET-13-0771)the Hebei Science Fund for Distinguished Young Scholars (GCC2014063) to X.X
文摘Summary It was noted that circadian components function in plant adaptation to diurnal temperature cycles and freezing tolerance. Our genome-wide transcriptome analysis revealed that evening-phased COR27 and COR28 mainly repress the transcription of clockassociated evening genes PRRS, ELF4 and cold-responsive genes. Chromatin immunoprecipitation indicated that CCAI is recruited to the site containing EE elements of COR27 and COR28 promoters in a temperaturedependent way. Further genetic analysis shows COR28 is essential for the circadian function of PRR9 and PRRT. Together, our results support a role of COR27 and COR28 as nighttime repressors integrating circadian clock and plant cold stress responses.