Cerebral ischemia is a neurological disorder associated with complex pathological mechanisms,including autophagic degradation of neuronal mitochondria,or termed mitophagy,following ischemic events.Despite being well-d...Cerebral ischemia is a neurological disorder associated with complex pathological mechanisms,including autophagic degradation of neuronal mitochondria,or termed mitophagy,following ischemic events.Despite being well-documented,the cellular and molecular mechanisms under-lying the regulation of neuronal mitophagy remain unknown.So far,the evidence suggests neuronal autophagy and mitophagy are separately regulated in ischemic neurons,the latter being more likely activated by reperfusional injury.Specifically,given the polarized morphology of neurons,mitophagy is regulated by different neuronal compartments,with axonal mitochondria being degraded by autophagy in the cell body following ischemia-reperfusion insult.A variety of molecules have been associated with neuronal adaptation to ischemia,including PTEN-induced kinase 1,Parkin,BCL2 and adenovirus E1B 19-kDa-interacting protein 3(Bnip3),Bnip3-like(Bnip3l)and FUN14 domain-containing 1.Moreover,it is still controversial whether mitophagy protects against or instead aggravates ischemic brain injury.Here,we review recent studies on this topic and provide an updated overview of the role and regulation of mitophagy during ischemic events.展开更多
CtBP2(E1AC-terminal binding protein 2)作为辅阻遏物与多种转录因子联系而参与到很多生物过程中,如细胞分化、凋亡、发育和肿瘤发生等,然而其中许多作用机制尚不明了.为了对CtBP2进行深入研究,利用高通量酵母双杂交技术,以人CtBP2为诱...CtBP2(E1AC-terminal binding protein 2)作为辅阻遏物与多种转录因子联系而参与到很多生物过程中,如细胞分化、凋亡、发育和肿瘤发生等,然而其中许多作用机制尚不明了.为了对CtBP2进行深入研究,利用高通量酵母双杂交技术,以人CtBP2为诱饵,与含有1000个人肝基因克隆的酵母双杂交文库进行接合筛选获得了一个与它相互作用的猎物蛋白CCNH(Cyclin H).通过GST-pull down、免疫共沉淀和亚细胞共定位等实验进一步证明了这两个蛋白在体外和体内的相互作用.展开更多
Organisms produce high levels of reactive oxygen species(ROS)to kill pathogens or act as signaling molecules to induce immune responses;however,excessive ROS can result in cell death.To maintain ROS balance and cell s...Organisms produce high levels of reactive oxygen species(ROS)to kill pathogens or act as signaling molecules to induce immune responses;however,excessive ROS can result in cell death.To maintain ROS balance and cell survival,mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates.In marine invertebrates,however,mitophagy and its functions remain largely unknown.In the current study,Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential(ΔΨm)and mitophagosome formation.The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide(LPS)treatment increased mitophagy flux.To explore the regulatory mechanism of mitophagy,we cloned Bcl2/adenovirus E1 B 19 kDa protein-interacting protein 3(BNIP3),a common mitophagy receptor,from sea cucumber Apostichopus japonicus(Aj BNIP3)and confirmed that Aj BNIP3 was significantly induced and accumulated in mitochondria after V.splendidus infection and LPS exposure.At the mitochondrial membrane,Aj BNIP3 interacts with microtubule-associated protein 1 light chain 3(LC3)on phagophore membranes to mediate mitophagy.After Aj BNIP3 interference,mitophagy flux decreased significantly.Furthermore,Aj BNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide(H2 O2),ROS scavengers,and ROS inhibitors.Finally,inhibition of BNIP3-mediated mitophagy by Aj BNIP3 small interfering RNA(si RNA)or high concentrations of lactate increased apoptosis and decreased coelomocyte survival.These findings highlight the essential role of Aj BNIP3 in damaged mitochondrial degradation during mitophagy.This mitophagy activity is required for coelomocyte survival in A.japonicus against V.splendidus infection.展开更多
基金funded by National Natural Science Foundation of China(81973402)Natural Science Foundation of Zhejiang Province(LYY22H310009)+1 种基金Hospital Pharmacy Scientific Research Funding Project of Zhejiang Pharmaceutical Association(2020ZYY10)Clinical research fund project of Zhejiang Medical Association(2020ZYC-A07).
文摘Cerebral ischemia is a neurological disorder associated with complex pathological mechanisms,including autophagic degradation of neuronal mitochondria,or termed mitophagy,following ischemic events.Despite being well-documented,the cellular and molecular mechanisms under-lying the regulation of neuronal mitophagy remain unknown.So far,the evidence suggests neuronal autophagy and mitophagy are separately regulated in ischemic neurons,the latter being more likely activated by reperfusional injury.Specifically,given the polarized morphology of neurons,mitophagy is regulated by different neuronal compartments,with axonal mitochondria being degraded by autophagy in the cell body following ischemia-reperfusion insult.A variety of molecules have been associated with neuronal adaptation to ischemia,including PTEN-induced kinase 1,Parkin,BCL2 and adenovirus E1B 19-kDa-interacting protein 3(Bnip3),Bnip3-like(Bnip3l)and FUN14 domain-containing 1.Moreover,it is still controversial whether mitophagy protects against or instead aggravates ischemic brain injury.Here,we review recent studies on this topic and provide an updated overview of the role and regulation of mitophagy during ischemic events.
基金supported by the National Natural Science Foundation of China(32073003,32102825)Natural Science Foundation of Zhejiang Province(LZ19C190001)+1 种基金Key Project from Science Technology Department of Zhejiang Province(2019R52016)K.C.Wong Magna Fund in Ningbo University。
文摘Organisms produce high levels of reactive oxygen species(ROS)to kill pathogens or act as signaling molecules to induce immune responses;however,excessive ROS can result in cell death.To maintain ROS balance and cell survival,mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates.In marine invertebrates,however,mitophagy and its functions remain largely unknown.In the current study,Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential(ΔΨm)and mitophagosome formation.The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide(LPS)treatment increased mitophagy flux.To explore the regulatory mechanism of mitophagy,we cloned Bcl2/adenovirus E1 B 19 kDa protein-interacting protein 3(BNIP3),a common mitophagy receptor,from sea cucumber Apostichopus japonicus(Aj BNIP3)and confirmed that Aj BNIP3 was significantly induced and accumulated in mitochondria after V.splendidus infection and LPS exposure.At the mitochondrial membrane,Aj BNIP3 interacts with microtubule-associated protein 1 light chain 3(LC3)on phagophore membranes to mediate mitophagy.After Aj BNIP3 interference,mitophagy flux decreased significantly.Furthermore,Aj BNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide(H2 O2),ROS scavengers,and ROS inhibitors.Finally,inhibition of BNIP3-mediated mitophagy by Aj BNIP3 small interfering RNA(si RNA)or high concentrations of lactate increased apoptosis and decreased coelomocyte survival.These findings highlight the essential role of Aj BNIP3 in damaged mitochondrial degradation during mitophagy.This mitophagy activity is required for coelomocyte survival in A.japonicus against V.splendidus infection.