To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation consi...To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.展开更多
With further increasing in running speed of newer high-speed EMUs(electric multiple units),higher demand for wheelset dynamic balance is required.In order to study the influence of the dynamic unbalance of wheelset ...With further increasing in running speed of newer high-speed EMUs(electric multiple units),higher demand for wheelset dynamic balance is required.In order to study the influence of the dynamic unbalance of wheelset on the stability,ride quality,and curving performance for a high-speed car,a detailed dynamic model of a high-speed EMU car is established using the software SIMPACK.The analysis results indicate that the dynamic unbalance of the wheelset significantly influences the dynamic performance of the high-speed car.The increase in dynamic unbalance of the wheelset will decrease the hunting critical speed,worsen the vertical ride quality,and increase the wheelset lateral force,derailment coefficient,and wheel unloading ratio.Therefore,in order to improve the stability,ride quality,and running safety of high-speed car,the values of dynamic unbalance of wheelset should be strictly controlled in manufacturing,and periodically monitored in operation.展开更多
基金supported by the National Science and Technology Support Program of China (No. 2011 BAG10B01)the National Key Basic Research Program of China (No. 2011CB711100)+1 种基金the National Science and Technology Support Program of China (No. U1334206)the New Century Excellent Talents of Ministry of Education funded project (No. NCET-10-0664)
文摘To study the vibration transmission character istics of a flexible carbody and its suspended equipment, a vertical mathematical model of highspeed electric multiple unit was established with equipment excitation considered. And the dynamic unbalance and impact turbulence excita tion from equipment were taken into account in a single stage and twostage vibration isolation system, respectively. Results show that the excitation transferred to carbody increases with suspension stiffness but decreases with the equipment mass increasing; the vibration transmission can be reduced by increasing the equipment mass or reduce the suspension stiffness. To avoid vibration resonance, the dynamic unbalance frequency of equipment should be out of the possible range of the carbody flexible modes, and a small stiffness should be applied to reduce the impact tur bulence. A small stiffness, however, would result in a large movement of the equipment which is limited by the static deflection requirement, while a great stiffness will transfer high frequency vibration. Therefore, a preferred stiffness should make the suspension frequency of equipment a bit greater than the first bending mode of carbody. Additionally, a 3D rigidflexible coupled dynamics model was built to verify the mathematical analysis, and they show good agreements. Results show that a twostage isolation could reduce the excitation transmission and make the vibration of carbody and equipment acceptable.
基金supported by the National High Technology Research and Development Program of China(2009AA110303-06)the National S&T Program in the 11th Five-Year Plan Period (2009BAG12A02-B02-2)+1 种基金the Program for New Century Excellent Talents in Universities (NCET-10-0664)the Key Program of the Ministry of Railways (2010J003-E)
文摘With further increasing in running speed of newer high-speed EMUs(electric multiple units),higher demand for wheelset dynamic balance is required.In order to study the influence of the dynamic unbalance of wheelset on the stability,ride quality,and curving performance for a high-speed car,a detailed dynamic model of a high-speed EMU car is established using the software SIMPACK.The analysis results indicate that the dynamic unbalance of the wheelset significantly influences the dynamic performance of the high-speed car.The increase in dynamic unbalance of the wheelset will decrease the hunting critical speed,worsen the vertical ride quality,and increase the wheelset lateral force,derailment coefficient,and wheel unloading ratio.Therefore,in order to improve the stability,ride quality,and running safety of high-speed car,the values of dynamic unbalance of wheelset should be strictly controlled in manufacturing,and periodically monitored in operation.