Energy saving and fast responding of data gathering are two crucial factors for the performance of wireless sensor networks. A dynamic tree based energy equalizing routing scheme (DTEER) was proposed to make an effo...Energy saving and fast responding of data gathering are two crucial factors for the performance of wireless sensor networks. A dynamic tree based energy equalizing routing scheme (DTEER) was proposed to make an effort to gather data along with low energy consumption and low time delay. DTEER introduces a dynamic multi-hop route selecting scheme based on weight-value and height-value to form a dynamic tree and a mechanism similar to token passing to elect the root of the tree. DTEER can simply and rapidly organize all the nodes with low overhead and is robust enough to the topology changes. When compared with power-efficient gathering in sensor information systems (PEGASIS) and the hybrid, energy- efficient, distributed clustering approach (HEED), the simulation results show that DTEER achieves its intention of consuming less energy, equalizing the energy consumption of all the nodes, alleviating the data gathering delay, as well as extending the network lifetime perfectly.展开更多
在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问...在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问题,节点动态选择路由并轮换充当树根,根节点收集数据并与基站直接通信.同时,针对不同的时延和能效要求,提出了3种数据收集策略:时延最优算法(EEDBDG-D),能效最优算法(EEDBDG-E)和能效时延平衡算法(EEDBDG-M).仿真结果表明,在节点通信半径受限的情况下,EEDBDG平衡了节点能量消耗,延长了网络生命时间,在节能与省时上均表现出了突出的性能.与GSEN相比,在最好情况下,EEDBDG-E网络生命期提高了72%,EEDBDG-D汇聚时延降低了74%.展开更多
基金the National Natural Science Foundation of China(60602016);the National Basic Research Program of China(2003CB314801);the Hi-Tech Resrarch and Development Program of China(2007AA01Z428); MOE-MS Key Laboratory of Multimedia Calculation and Communication Open Foundation(05071801);HUAWEI Foundation(YJCB2006062WL,YJCB2007061WL).
文摘Energy saving and fast responding of data gathering are two crucial factors for the performance of wireless sensor networks. A dynamic tree based energy equalizing routing scheme (DTEER) was proposed to make an effort to gather data along with low energy consumption and low time delay. DTEER introduces a dynamic multi-hop route selecting scheme based on weight-value and height-value to form a dynamic tree and a mechanism similar to token passing to elect the root of the tree. DTEER can simply and rapidly organize all the nodes with low overhead and is robust enough to the topology changes. When compared with power-efficient gathering in sensor information systems (PEGASIS) and the hybrid, energy- efficient, distributed clustering approach (HEED), the simulation results show that DTEER achieves its intention of consuming less energy, equalizing the energy consumption of all the nodes, alleviating the data gathering delay, as well as extending the network lifetime perfectly.
文摘在追求无线传感器网络高能量效率的同时,考虑数据汇聚时延,提出了一种能效与时延平衡的数据收集机制(energy efficiency and delay balancing data gathering,EEDBDG).该机制采用一种新型动态树来组织网络拓扑,消除了"热区"问题,节点动态选择路由并轮换充当树根,根节点收集数据并与基站直接通信.同时,针对不同的时延和能效要求,提出了3种数据收集策略:时延最优算法(EEDBDG-D),能效最优算法(EEDBDG-E)和能效时延平衡算法(EEDBDG-M).仿真结果表明,在节点通信半径受限的情况下,EEDBDG平衡了节点能量消耗,延长了网络生命时间,在节能与省时上均表现出了突出的性能.与GSEN相比,在最好情况下,EEDBDG-E网络生命期提高了72%,EEDBDG-D汇聚时延降低了74%.