The thermodynamic parameters of FRW fire-retardant plywood at different temperatures were measured by dynamic mechanical analysis (DMA) equipment such as storage modulus, loss modulus and loss angle tangent. The influ...The thermodynamic parameters of FRW fire-retardant plywood at different temperatures were measured by dynamic mechanical analysis (DMA) equipment such as storage modulus, loss modulus and loss angle tangent. The influences on the thermodynamic properties of FRW fire-retardant plywood by the FRW fire retardant were analyzed between the FRW fire-retardant plywood and the untreated plywood. The results showed that the transition temperature of FRW fire-retardant plywood’s storage modulus was delayed than the untreated plywood. Its value was also higher than the untreated plywood. Meanwhile the glass transition temperature of plywood treated by FRW fire retardant was raised. FRW fire-retardant plywood could keep the better mechanical performances and ability of deformation-resistance at higher temperature and during longer period than the untreated plywood.展开更多
以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,...以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,未经过交联反应的LLDPE的水树枝尺寸明显低于低密度聚乙烯(linear low density polyethylene,LDPE),即使两种材料在经过交联反应后抗水树能力均变强,但XLPE1的抗水树性能仍优于XLPE2。拉伸实验过程中出现的应变硬化现象表明,交联键以及LLDPE中密集的短支链均可以增加无定形相的连接分子链密度,延缓了水树的生长。另外,动态热机械分析(dynamic mechanical analysis,DMA)结果表明交联反应使材料无定形相韧性增加,有助于吸收微水珠的冲击力。XLPE1具有相对优异的抑制水树生长能力,这可能与LLDPE抗水树性能略好以及其交联度略高有关。展开更多
The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of...The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.展开更多
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA)....Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.展开更多
文摘The thermodynamic parameters of FRW fire-retardant plywood at different temperatures were measured by dynamic mechanical analysis (DMA) equipment such as storage modulus, loss modulus and loss angle tangent. The influences on the thermodynamic properties of FRW fire-retardant plywood by the FRW fire retardant were analyzed between the FRW fire-retardant plywood and the untreated plywood. The results showed that the transition temperature of FRW fire-retardant plywood’s storage modulus was delayed than the untreated plywood. Its value was also higher than the untreated plywood. Meanwhile the glass transition temperature of plywood treated by FRW fire retardant was raised. FRW fire-retardant plywood could keep the better mechanical performances and ability of deformation-resistance at higher temperature and during longer period than the untreated plywood.
文摘以线性低密度聚乙烯(linear low density polyethylene,LLDPE)为基础树脂,采用紫外光交联法制备了交联聚乙烯试样(记为XLPE1),并利用水刀电极法比较了XLPE1与过氧化物交联低密度聚乙烯(记为XLPE2)在抗水树性能的差异。结果表明,未经过交联反应的LLDPE的水树枝尺寸明显低于低密度聚乙烯(linear low density polyethylene,LDPE),即使两种材料在经过交联反应后抗水树能力均变强,但XLPE1的抗水树性能仍优于XLPE2。拉伸实验过程中出现的应变硬化现象表明,交联键以及LLDPE中密集的短支链均可以增加无定形相的连接分子链密度,延缓了水树的生长。另外,动态热机械分析(dynamic mechanical analysis,DMA)结果表明交联反应使材料无定形相韧性增加,有助于吸收微水珠的冲击力。XLPE1具有相对优异的抑制水树生长能力,这可能与LLDPE抗水树性能略好以及其交联度略高有关。
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group project No.RGP-VPP-133
文摘The objective of this work is to demonstrate how the viscoelastic, thermal, rheological, hardness, wear resistance and fracture behavior of bioinert high-density polyethylene (HDPE) can be changed by the addition of hydroxyapatite (HAP) nano particles. Also the effects of accelerated thermal ageing on the composite properties have been investigated. Different weight fractions of HAP nano particles up to 30 wt% have been incorporated in HDPE matrix by using melt blending in co-rotating intermeshing twin screw extruder. The fracture toughness results showed a remarkable decrease in proportion to the HAP content. The differential scanning calorimetry results indicated that the melting temperature and crystallinity were affected by the addition of HAP nano particles into the matrix. The complex viscosity increased as the percentage of HAP increased due to the restriction of the molecular mobility. The dynamic mechanical analysis results revealed that higher storage modulus (8.3 1011 Pa) could be obtained in the developed HDPE/HAP in 30 wt% compared to neat HDPE (5.1 1011 Pa). Finally, the hardness and wear resistance of HDPE were improved significantly due to the addition of HAP nano particles. The changes in the HDPE and its nano composite properties due to ageing showed that the HDPE and its nano composites crystallinity increased while the fracture toughness, hardness, wear resistance, storage and loss modulus decreased.
基金supported by the National Natural Science Foundation of China (Grant No. 30871966)
文摘Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.