Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural e...Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural engineering measures as an important assessment factor.In this study,based on six substantial field investigations conducted between July 2008 and July 2012,a 2 km wide zone along both sides of the Dujiangyan Wenchuan(Du Wen) Highway was selected as the study area.Microgeomorphic units and small watersheds in the study area were extracted with GIS software and used as basic assessment units.Through field investigations,remote sensing surveys and experimental analysis,a structural engineering effectiveness assessment was conducted using the technique of principal component analysis.The results showed the following:1) A total of 491 collapses,12 landslides,32 slope debris flows and 17 gully debris flows were scatted across the study area.The total overall areal density of all mountain hazards was 25.7%.The distribution of secondary hazards was influenced mainly by seismic intensity,active fault zones,lithology,slope and altitude.More than 70% of secondary hazards occurred in zones with a seismic intensity of XI,a distance to the fault zone of between 0 and 25 km,a slope between 25° and 50°,and an altitude of between 1,000 m and 1,800 m.2) Different structural engineering measures play different roles and effects in controlling different types and scales of secondary mountain hazards.3) With a secondary mountain hazard area of 128.1 km2and an areal density of 34.9%,medium,high and very high hazard zones accounted for 74% of the study area and were located on the high,steep slopes along both sides of the highway.The low hazard zone was located mainly in the valley floor,on gentle slope platforms and at locations 1.5 km away from the highway the hazard area was 45 km2and the areal density was 3.3%.4) The methodology for hazard assessment of secondary mountain hazards,which is based on five factors,solves展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40901273)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province(Changsha University of Science and Technology,Grant No.kfj120404)+1 种基金the Western China Communication Science and Technology Projection(Grant No.2008-318-221-56)the Graduate Innovation Foundation of Hunan University of Science and Technology(Grant No.S120033 and S120034)
文摘Conducting a hazard assessment for secondary mountain hazards is the technical basis for reconstructing destroyed highways and for disaster prevention.It is necessary to consider the role and influence of structural engineering measures as an important assessment factor.In this study,based on six substantial field investigations conducted between July 2008 and July 2012,a 2 km wide zone along both sides of the Dujiangyan Wenchuan(Du Wen) Highway was selected as the study area.Microgeomorphic units and small watersheds in the study area were extracted with GIS software and used as basic assessment units.Through field investigations,remote sensing surveys and experimental analysis,a structural engineering effectiveness assessment was conducted using the technique of principal component analysis.The results showed the following:1) A total of 491 collapses,12 landslides,32 slope debris flows and 17 gully debris flows were scatted across the study area.The total overall areal density of all mountain hazards was 25.7%.The distribution of secondary hazards was influenced mainly by seismic intensity,active fault zones,lithology,slope and altitude.More than 70% of secondary hazards occurred in zones with a seismic intensity of XI,a distance to the fault zone of between 0 and 25 km,a slope between 25° and 50°,and an altitude of between 1,000 m and 1,800 m.2) Different structural engineering measures play different roles and effects in controlling different types and scales of secondary mountain hazards.3) With a secondary mountain hazard area of 128.1 km2and an areal density of 34.9%,medium,high and very high hazard zones accounted for 74% of the study area and were located on the high,steep slopes along both sides of the highway.The low hazard zone was located mainly in the valley floor,on gentle slope platforms and at locations 1.5 km away from the highway the hazard area was 45 km2and the areal density was 3.3%.4) The methodology for hazard assessment of secondary mountain hazards,which is based on five factors,solves