Iron oxide nanoparticle(IONP)with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging(MRI)contrast agent(CA)for long time.However,a review which comprehensively summa...Iron oxide nanoparticle(IONP)with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging(MRI)contrast agent(CA)for long time.However,a review which comprehensively summarizes the recent development of IONP as traditional T_(2) CA and its new application for different modality of MRI,such as T_(1) imaging,simultaneous T_(2)/T_(1) or MRI/other imaging modality,and as environment responsive CA is rare.This review starts with an investigation of direction on the development of high-performance MRI CA in both T_(2) and T_(1) modal based on quantum mechanical outer sphere and Solomon-Bloembergen-Morgan(SBM)theory.Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters,including magnetization,size,effective radius,inhomogeneity of surrounding generated magnetic field,crystal phase,coordination number of water,electronic relaxation time,and surface modification are summarized.Besides the strategies to improve r2 or r1 values,strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects,those are introducing second imaging modality to increase the imaging accuracy,endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue,and optimizing the interface structure to improve the accumulation amount of IONP in lesion.This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs.It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis.展开更多
Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment.Herein,an optimized strate...Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment.Herein,an optimized strategy for designing a Fe_(3)O_(4)-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering(SERS)and magnetic resonance imaging(MRI)is introduced.Excellent SERS activity of ultrasmall Fe_(3)O_(4) nanoparticles(NPs)was discovered,and a 5×10^(-9)M limit of detection for crystal violet molecules was successfully obtained.The high-efficiency interfacial photon-induced charge transfer in Fe_(3)O_(4) NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe,which was observed using ultraviolet-visible diffuse reflectance spectroscopy.Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe_(3)O_(4) NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination.The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Feg Og-based bioprobe with high sensitivity and good specificity.Notably,Fe_(3)O_(4)-based bioprobes simultaneously exhibited T,-weighted MRI contrast enhancement with an active targeting capability for tumors in vivo.To the best of our knowledge,this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro,which has been previously realized only using semiconductor-metal complex materials.The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform,which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment.展开更多
The insufficient internal resorption of iodide ions(I−)leads to thyroid disorders,such as goiter,hypothyroidism,and cretinism in adults.In this paper,a portable point-of-care testing(POCT)platform was developed for th...The insufficient internal resorption of iodide ions(I−)leads to thyroid disorders,such as goiter,hypothyroidism,and cretinism in adults.In this paper,a portable point-of-care testing(POCT)platform was developed for the dual-modal analysis of I^(−),seamlessly integrating both colorimetric and photothermal thermometer techniques.The quantification of results was achieved using a standard thermometer or smartphone.G-Quadruplex/Hemin(G4/Hemin)is the DNAzyme with peroxidase-like activity.The catalytic efficacy of G-quadruplex structures can be enhanced with the help of I^(−),manifesting as multicolor transitions from colorless to green and then blue,and accompanied by the increase of temperature,which can be used for the quantitative detection of I^(−).Additionally,digital analysis according to the three-color channels(R/G/B)by a cellphone eliminated the requirement for intricate instruments.This dual-modal method for portable I^(−)determination is cost-effectiveness,simplicity,remarkable sensitivity(0.5 nmol/L)and selectivity.Besides,it was applied to determining the concentration of I^(−)in spiked serum samples.展开更多
The prognosis of glioblastoma(GBM)remains challenging,primarily due to the lack of a precise,effective imaging technique for comprehensively characterization.Addressing GBM diagnostic challenges,our study introduces a...The prognosis of glioblastoma(GBM)remains challenging,primarily due to the lack of a precise,effective imaging technique for comprehensively characterization.Addressing GBM diagnostic challenges,our study introduces an innovative dual-modal imaging that merges near-infrared(NIR)fluorescent imaging with magnetic resonance imaging(MR).This method employs superparamagnetic iron oxide nanoparticies coated with NIR fluorescent dyes,specifically Cyanine 7,and targeted peptides.This synthetic probe facilitates MRI functionality through superparamagnetic iron oxide nanoparticles,provides NIR imaging capability via Cyanine 7 and enhances tumor targeting trough peptide interactions,offering a comprehensive diagnostic tool for GBM.Notably,the probe traverses the blood-brain barrier,targeting GBM in vivo via peptides,producing clear and discermible images in both modalities.Cytotoxicity and histopathology assessments confirm the probe's favorable safet profile.These findings suggest that the dual-modal MRINIR fluorescent imaging probe could revolutionize GBM prognosis and survival rate which can also be extended to other tumors type.展开更多
Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that s...Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that simultaneously exhibit tunability of functional groups,high stability,great biocompatibility and desired dual-modality imaging results remains challenging.In this study,we used an amphiphilic block polymer from(ethylene glycol)methyl ether methacrylate(OEGMA)and N-(2-hydroxypropyl)methacrylamide(HPMA)derivatives as a carrier to conjugate a MR contrast agent,Gd-DOTA,and a two-photon fluorophore with an aggregation-induced emission(AIE)effect,TPBP,to construct a MR/two-photon fluorescence dual-modality contrast agent,Gd-DOTA-TPBP.Incorporation of gadolinium in the hydrophilic chain segment of the OEGMA-based carrier resulted in a high r_(1)value for Gd-DOTA-TPBP,revealing a great MR imaging resolution.The contrast agent specifically accumulated in the tumor region,allowing a long enhancement duration for vascular and tumor contrast-enhanced MR imaging.Meanwhile,coupling TPBP with AIE properties to the hydrophobic chain segment of the carrier not only improved its water solubility and reduced its cytotoxicity,but also significantly enhanced its imaging performance in an aqueous phase.Gd-DOTA-TPBP was also demonstrated to act as an excellent fluorescence probe for two-photon-excited bioimaging with higher resolution and greater sensitivity than MRI.Since high-resolution,complementary MRI/FI dual-modal images were acquired at both cellular and tissue levels in tumor-bearing mice after application of Gd-DOTA-TPBP,it has great potential in the early phase of disease diagnosis.展开更多
In this work, we report the synthesis of holmium(III)-doped carbon nanodots(Ho BCDs) as fluorescence/magnetic resonance(FL/MR) dual-modal imaging probes via a facile hydrothermal process using citrate acid(CA)...In this work, we report the synthesis of holmium(III)-doped carbon nanodots(Ho BCDs) as fluorescence/magnetic resonance(FL/MR) dual-modal imaging probes via a facile hydrothermal process using citrate acid(CA), branched-polyethylenimine(BPEI) and diethylenetriamine pentaacetic acid hydrate holmium(III) dihydrogen salt(Ho-DTPA) as carbon source, passivating reagent and holmium source, respectively.The thus prepared Ho BCDs exhibited ultra-small particle size(~4 nm), high water solubility and bright fluorescence with an absolute quantum yield of 8%. Additionally, grey-scaled T_1-weighted images of Ho BCDs solution appeared to be apparently brighter than that of deionized water and un-doped blue carbon nanodots(BCDs) solution. In addition, in vitro toxicity assay validated superior biocompatibility of Ho BCDs. Using He La cells as models, Ho BCDs-treated cells were observed to emit blue fluorescence located both in plasma and nucleus, and presented positive contrast enhancement in T_1-weighted images, suggesting their potentials for practical biomedical applications.展开更多
Background and Aims:Stem cell transplantation is a potential treatment option for liver cirrhosis(LC).Accurately and noninvasively monitoring the distribution,migration,and prognosis of transplanted stem cells using i...Background and Aims:Stem cell transplantation is a potential treatment option for liver cirrhosis(LC).Accurately and noninvasively monitoring the distribution,migration,and prognosis of transplanted stem cells using imaging methods is important for in-depth study of the treatment mechanisms.Our study aimed to develop Au-Fe3O4 silica nanoparticles(NPs)as tracking nanoplatforms for dualmodal stem cell imaging.Methods:Au-Fe3O4 silica NPs were synthesized by seed-mediated growth method and co-precipitation.The efficiency and cytotoxicity of the NPslabeled bone marrow-derived mesenchymal stem cells(BMMSCs)were evaluated by Cell Counting Kit-8 assays,ICPMS,phenotypic characterization,and histological staining.The biodistribution of labeled BM-MSCs injected through different routes(the hepatic artery or tail vein)into rats with LC was detected by magnetic resonance imaging(MRI),photoacoustic imaging(PAI),and Prussian blue staining.Results:Synthesized Au-Fe3O4 silica NPs consisted of a core(star-shaped Au NPs)and an outside silica layer doped with Fe3O4 NPs.After 24 h coincubation with 2.0 OD concentration of NPs,the viability of BM-MSCs was 77.91%±5.86%and the uptake of Au and Fe were(22.65±1.82)µg/mL and(234.03±11.47)µg/mL,respectively.The surface markers of labeled BM-MSCs unchanged significantly.Labeled BMMSCs have osteogenic and adipogenic differentiation potential.Post injection in vivo,rat livers were hypointense on MRI and hyperintense on PAI.Prussian blue staining showed that more labeled BM-MSCs accumulated in the liver of the hepatic artery group.The severity of LC of the rats in the hepatic artery group was significantly alleviated.Conclusions:Au-Fe3O4 silica NPs were suitable MRI/PAI dual-modal imaging nanoplatforms for stem cell tracking in regenerative medicine. Transhepatic arterial infusion of BMMSCs was the optimal route for the treatment of LC.展开更多
Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is...Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance.Herein,gadolinium-containing semiconductor polymer nanoparticles(SPN-Gd)were designed and prepared.The nanoparticles consist of a near-infrared(NIR)absorption semiconductor polymer(PCPDTBT)served as fluorescence signal source and a photothermal conversion agent(PTA)and a gadolinium-grafted triblock amphiphilic copolymer(F127-DTPA-Gd)served as a magnetic resonance imaging(MRI)contrast agent and nanocarrier.The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time,and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy(PTT).Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.展开更多
Taking apart in numerous physiological and pathological activities,hydrogen sulfide(H_(2)S)has been selected as an excellent target spot for the early diagnosis of cancer.So far,there are many mature probes that apply...Taking apart in numerous physiological and pathological activities,hydrogen sulfide(H_(2)S)has been selected as an excellent target spot for the early diagnosis of cancer.So far,there are many mature probes that apply single optical imaging to monitor endogenous H_(2)S.Nevertheless,a single modality is not an ideal method to afford accurate diagnostic information in comprehensive biological organisms.Herein,we developed a dual-modal imaging probe BWS.This designed probe showed a specific response to H_(2)S with both chemiluminescence and NIR fluorescence light-up.The concurrence of fluorescence and chemiluminescence signal provided“double insurances”for highly accurate monitoring of H_(2)S.Satisfactorily,this dual-modal imaging probe performed precise visualization of endogenous H_(2)S in living cells and in vivo.We envisaged that this chemiluminescence/fluorescence real-time dual-modality strategy for H_(2)S detection will expand and optimize the multimodal imaging methods for efficient diagnosis and treatment of cancer.展开更多
A novel dual-modal fluorometric and colorimetric method was developed for glucose detection using MnO2 sheets and carbon quantum dots(CQDs). The glucose could be oxidized by glucose oxidase, in accompanied witli the f...A novel dual-modal fluorometric and colorimetric method was developed for glucose detection using MnO2 sheets and carbon quantum dots(CQDs). The glucose could be oxidized by glucose oxidase, in accompanied witli the fbnnation of H2O2 intennediate, which resulted in the decomposition of MnO2 sheets, as well as tlie MnO2 sheets(brown) changed to Mn^2+ ions(colorless), which induced the absorption of MnO2 sheet decreased and the fluorescence of CQDs increased, consequently. The linear detection ranges of glucose are 5-1000 μmol/L by fluorescent method and 5-60 μmol/L by colorimetric method. The limits of detection of these two measurements are 2.11 and 2.18 μmol/L, respectively. This method is easy to conduct, has reasonable sensitive and selectivity, and could be applied for the glucose detection in real human senim.展开更多
Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in s...Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in serving as pH-responsive T1-T2^*dual-modal magnetic resonance(MR)imaging contrast agents.The released Mn^2+shortened T1 relaxation time,meanwhile the superparamagnetic Fe3O4 enhanced T2 contrast imaging.The release rate of Mn ions reaches 31.66%under the condition of pH=5.0,which is similar to tumor microenvironment and organelles.Cytotoxicity assays show that MnSiO3@Fe3O4@C NPs have minor toxicity,even at high concentrations.After intravenous injection of MnSiO3@Fe3O4@C NPs,a rapid contrast enhancement in tumors was achieved with a significant enhancement of 132%after 24 h of the administration.Moreover,a significant decreasement of 53.8%was witnessed in T2 MR imaging signal.It demonstrated that MnSiO3@Fe3O4@C NPs can act as both positive and negative MR imaging contrast agents.Besides,owing to the pH-responsive degradation of mesoporous MnSiO3,MnSiO3@Fe3O4@C NPs can also be used as potential drug systems for cancer theranostics.展开更多
基金supported by the National Natural Science Foundation of China(81601607 and 81971609)Chongqing High-level Personnel of Special Support Program(Youth Top-notch Talent CQYC201905077)Creative Research Group of CQ University(CXQT21017).
文摘Iron oxide nanoparticle(IONP)with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging(MRI)contrast agent(CA)for long time.However,a review which comprehensively summarizes the recent development of IONP as traditional T_(2) CA and its new application for different modality of MRI,such as T_(1) imaging,simultaneous T_(2)/T_(1) or MRI/other imaging modality,and as environment responsive CA is rare.This review starts with an investigation of direction on the development of high-performance MRI CA in both T_(2) and T_(1) modal based on quantum mechanical outer sphere and Solomon-Bloembergen-Morgan(SBM)theory.Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters,including magnetization,size,effective radius,inhomogeneity of surrounding generated magnetic field,crystal phase,coordination number of water,electronic relaxation time,and surface modification are summarized.Besides the strategies to improve r2 or r1 values,strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects,those are introducing second imaging modality to increase the imaging accuracy,endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue,and optimizing the interface structure to improve the accumulation amount of IONP in lesion.This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs.It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis.
文摘Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment.Herein,an optimized strategy for designing a Fe_(3)O_(4)-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering(SERS)and magnetic resonance imaging(MRI)is introduced.Excellent SERS activity of ultrasmall Fe_(3)O_(4) nanoparticles(NPs)was discovered,and a 5×10^(-9)M limit of detection for crystal violet molecules was successfully obtained.The high-efficiency interfacial photon-induced charge transfer in Fe_(3)O_(4) NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe,which was observed using ultraviolet-visible diffuse reflectance spectroscopy.Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe_(3)O_(4) NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination.The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Feg Og-based bioprobe with high sensitivity and good specificity.Notably,Fe_(3)O_(4)-based bioprobes simultaneously exhibited T,-weighted MRI contrast enhancement with an active targeting capability for tumors in vivo.To the best of our knowledge,this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro,which has been previously realized only using semiconductor-metal complex materials.The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform,which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment.
基金supported by the National Natural Science Foundation of China(Nos.21864026,21605130)the Natural Science Foundation of Yunnan Province,China(Nos.2018FB016,2016FD017).
文摘The insufficient internal resorption of iodide ions(I−)leads to thyroid disorders,such as goiter,hypothyroidism,and cretinism in adults.In this paper,a portable point-of-care testing(POCT)platform was developed for the dual-modal analysis of I^(−),seamlessly integrating both colorimetric and photothermal thermometer techniques.The quantification of results was achieved using a standard thermometer or smartphone.G-Quadruplex/Hemin(G4/Hemin)is the DNAzyme with peroxidase-like activity.The catalytic efficacy of G-quadruplex structures can be enhanced with the help of I^(−),manifesting as multicolor transitions from colorless to green and then blue,and accompanied by the increase of temperature,which can be used for the quantitative detection of I^(−).Additionally,digital analysis according to the three-color channels(R/G/B)by a cellphone eliminated the requirement for intricate instruments.This dual-modal method for portable I^(−)determination is cost-effectiveness,simplicity,remarkable sensitivity(0.5 nmol/L)and selectivity.Besides,it was applied to determining the concentration of I^(−)in spiked serum samples.
基金the Scientific and Technological Achievements Transformation Fund of West China Hospital,Sichuan University(grant CGZH21002)the Innovative Research Project of Sichuan University(grant 2022SCUH00132)the Sichuan Foundation for Distinguished Young Scholars(grant 2022JDJQ0049).
文摘The prognosis of glioblastoma(GBM)remains challenging,primarily due to the lack of a precise,effective imaging technique for comprehensively characterization.Addressing GBM diagnostic challenges,our study introduces an innovative dual-modal imaging that merges near-infrared(NIR)fluorescent imaging with magnetic resonance imaging(MR).This method employs superparamagnetic iron oxide nanoparticies coated with NIR fluorescent dyes,specifically Cyanine 7,and targeted peptides.This synthetic probe facilitates MRI functionality through superparamagnetic iron oxide nanoparticles,provides NIR imaging capability via Cyanine 7 and enhances tumor targeting trough peptide interactions,offering a comprehensive diagnostic tool for GBM.Notably,the probe traverses the blood-brain barrier,targeting GBM in vivo via peptides,producing clear and discermible images in both modalities.Cytotoxicity and histopathology assessments confirm the probe's favorable safet profile.These findings suggest that the dual-modal MRINIR fluorescent imaging probe could revolutionize GBM prognosis and survival rate which can also be extended to other tumors type.
基金supported by National Natural Science Foundation of China(52073193,51873120,81621003,51903173)1⋅3⋅5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(ZYJC21013)+1 种基金Science and Technology Program of Sichuan province(2020YJ0231)China Postdoctoral Science Foundation(2021M692255).
文摘Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that simultaneously exhibit tunability of functional groups,high stability,great biocompatibility and desired dual-modality imaging results remains challenging.In this study,we used an amphiphilic block polymer from(ethylene glycol)methyl ether methacrylate(OEGMA)and N-(2-hydroxypropyl)methacrylamide(HPMA)derivatives as a carrier to conjugate a MR contrast agent,Gd-DOTA,and a two-photon fluorophore with an aggregation-induced emission(AIE)effect,TPBP,to construct a MR/two-photon fluorescence dual-modality contrast agent,Gd-DOTA-TPBP.Incorporation of gadolinium in the hydrophilic chain segment of the OEGMA-based carrier resulted in a high r_(1)value for Gd-DOTA-TPBP,revealing a great MR imaging resolution.The contrast agent specifically accumulated in the tumor region,allowing a long enhancement duration for vascular and tumor contrast-enhanced MR imaging.Meanwhile,coupling TPBP with AIE properties to the hydrophobic chain segment of the carrier not only improved its water solubility and reduced its cytotoxicity,but also significantly enhanced its imaging performance in an aqueous phase.Gd-DOTA-TPBP was also demonstrated to act as an excellent fluorescence probe for two-photon-excited bioimaging with higher resolution and greater sensitivity than MRI.Since high-resolution,complementary MRI/FI dual-modal images were acquired at both cellular and tissue levels in tumor-bearing mice after application of Gd-DOTA-TPBP,it has great potential in the early phase of disease diagnosis.
基金supported by grants from Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (No. 2014TQO1R417)the Fundamental Research Funds for the Central Universities (No. 171gjc09)Shenzhen Basic Research Program(No.JCYJ20170307140752183)
文摘In this work, we report the synthesis of holmium(III)-doped carbon nanodots(Ho BCDs) as fluorescence/magnetic resonance(FL/MR) dual-modal imaging probes via a facile hydrothermal process using citrate acid(CA), branched-polyethylenimine(BPEI) and diethylenetriamine pentaacetic acid hydrate holmium(III) dihydrogen salt(Ho-DTPA) as carbon source, passivating reagent and holmium source, respectively.The thus prepared Ho BCDs exhibited ultra-small particle size(~4 nm), high water solubility and bright fluorescence with an absolute quantum yield of 8%. Additionally, grey-scaled T_1-weighted images of Ho BCDs solution appeared to be apparently brighter than that of deionized water and un-doped blue carbon nanodots(BCDs) solution. In addition, in vitro toxicity assay validated superior biocompatibility of Ho BCDs. Using He La cells as models, Ho BCDs-treated cells were observed to emit blue fluorescence located both in plasma and nucleus, and presented positive contrast enhancement in T_1-weighted images, suggesting their potentials for practical biomedical applications.
基金funded by grants from The National Natural Science Foundation of China (No.81671800)。
文摘Background and Aims:Stem cell transplantation is a potential treatment option for liver cirrhosis(LC).Accurately and noninvasively monitoring the distribution,migration,and prognosis of transplanted stem cells using imaging methods is important for in-depth study of the treatment mechanisms.Our study aimed to develop Au-Fe3O4 silica nanoparticles(NPs)as tracking nanoplatforms for dualmodal stem cell imaging.Methods:Au-Fe3O4 silica NPs were synthesized by seed-mediated growth method and co-precipitation.The efficiency and cytotoxicity of the NPslabeled bone marrow-derived mesenchymal stem cells(BMMSCs)were evaluated by Cell Counting Kit-8 assays,ICPMS,phenotypic characterization,and histological staining.The biodistribution of labeled BM-MSCs injected through different routes(the hepatic artery or tail vein)into rats with LC was detected by magnetic resonance imaging(MRI),photoacoustic imaging(PAI),and Prussian blue staining.Results:Synthesized Au-Fe3O4 silica NPs consisted of a core(star-shaped Au NPs)and an outside silica layer doped with Fe3O4 NPs.After 24 h coincubation with 2.0 OD concentration of NPs,the viability of BM-MSCs was 77.91%±5.86%and the uptake of Au and Fe were(22.65±1.82)µg/mL and(234.03±11.47)µg/mL,respectively.The surface markers of labeled BM-MSCs unchanged significantly.Labeled BMMSCs have osteogenic and adipogenic differentiation potential.Post injection in vivo,rat livers were hypointense on MRI and hyperintense on PAI.Prussian blue staining showed that more labeled BM-MSCs accumulated in the liver of the hepatic artery group.The severity of LC of the rats in the hepatic artery group was significantly alleviated.Conclusions:Au-Fe3O4 silica NPs were suitable MRI/PAI dual-modal imaging nanoplatforms for stem cell tracking in regenerative medicine. Transhepatic arterial infusion of BMMSCs was the optimal route for the treatment of LC.
基金supported by the National Natural Science Foundation of China(Nos.82201135,22174070,and 61905122)Nanjing Clinical Research Center for Oral Diseases(No.2019060009)+2 种基金General project of Jiangsu Provincial Health Commission(No.M2021077)Scientific research fund of Jiangsu Medical Association(No.SYH-3201150-0007(2021002))the Natural Science Foundation of Jiangsu Province(No.BK20190735).
文摘Oral squamous cell carcinoma(OSCC)is the most common malignant tumor of the oral and maxillofacial region.Due to its unique location,earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance.Herein,gadolinium-containing semiconductor polymer nanoparticles(SPN-Gd)were designed and prepared.The nanoparticles consist of a near-infrared(NIR)absorption semiconductor polymer(PCPDTBT)served as fluorescence signal source and a photothermal conversion agent(PTA)and a gadolinium-grafted triblock amphiphilic copolymer(F127-DTPA-Gd)served as a magnetic resonance imaging(MRI)contrast agent and nanocarrier.The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time,and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy(PTT).Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.
基金supported by the National Natural Science Foundation of China(22077030,22271092,21977018,82173657)the China Postdoctoral Science Foundation(2021M701196)。
文摘Taking apart in numerous physiological and pathological activities,hydrogen sulfide(H_(2)S)has been selected as an excellent target spot for the early diagnosis of cancer.So far,there are many mature probes that apply single optical imaging to monitor endogenous H_(2)S.Nevertheless,a single modality is not an ideal method to afford accurate diagnostic information in comprehensive biological organisms.Herein,we developed a dual-modal imaging probe BWS.This designed probe showed a specific response to H_(2)S with both chemiluminescence and NIR fluorescence light-up.The concurrence of fluorescence and chemiluminescence signal provided“double insurances”for highly accurate monitoring of H_(2)S.Satisfactorily,this dual-modal imaging probe performed precise visualization of endogenous H_(2)S in living cells and in vivo.We envisaged that this chemiluminescence/fluorescence real-time dual-modality strategy for H_(2)S detection will expand and optimize the multimodal imaging methods for efficient diagnosis and treatment of cancer.
基金Supported by the National Natxiral Science Foundation of China(No.21305032)the Postdoctoral Science Foundation of China(Nos.2014M551522,2018M632238)+2 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20160490)the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,Chinatlie Open Research Fund of Henan Key Laboratory of Biomolecular Recognition and Sensing,China(No.HKLBRSK1803).
文摘A novel dual-modal fluorometric and colorimetric method was developed for glucose detection using MnO2 sheets and carbon quantum dots(CQDs). The glucose could be oxidized by glucose oxidase, in accompanied witli the fbnnation of H2O2 intennediate, which resulted in the decomposition of MnO2 sheets, as well as tlie MnO2 sheets(brown) changed to Mn^2+ ions(colorless), which induced the absorption of MnO2 sheet decreased and the fluorescence of CQDs increased, consequently. The linear detection ranges of glucose are 5-1000 μmol/L by fluorescent method and 5-60 μmol/L by colorimetric method. The limits of detection of these two measurements are 2.11 and 2.18 μmol/L, respectively. This method is easy to conduct, has reasonable sensitive and selectivity, and could be applied for the glucose detection in real human senim.
基金supported by the National Natural Science Foundation of China(No.21571168)
文摘Mesoporous structured MnSiO3@Fe3O4@C nanoparticles(NPs)were prepared via a facile and efficient strategy,with negligible cytotoxicity and minor side efforts.The as-prepared MnSiO3@Fe3O4@C NPs hold great potential in serving as pH-responsive T1-T2^*dual-modal magnetic resonance(MR)imaging contrast agents.The released Mn^2+shortened T1 relaxation time,meanwhile the superparamagnetic Fe3O4 enhanced T2 contrast imaging.The release rate of Mn ions reaches 31.66%under the condition of pH=5.0,which is similar to tumor microenvironment and organelles.Cytotoxicity assays show that MnSiO3@Fe3O4@C NPs have minor toxicity,even at high concentrations.After intravenous injection of MnSiO3@Fe3O4@C NPs,a rapid contrast enhancement in tumors was achieved with a significant enhancement of 132%after 24 h of the administration.Moreover,a significant decreasement of 53.8%was witnessed in T2 MR imaging signal.It demonstrated that MnSiO3@Fe3O4@C NPs can act as both positive and negative MR imaging contrast agents.Besides,owing to the pH-responsive degradation of mesoporous MnSiO3,MnSiO3@Fe3O4@C NPs can also be used as potential drug systems for cancer theranostics.