Alzheimer’s disease(AD)is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives.While the etiology of AD remain...Alzheimer’s disease(AD)is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives.While the etiology of AD remains an enigma,excessive accumulation ofβ-amyloid peptide(Aβ)is widely believed to induce pathological changes and cause dementia in brains of AD patients.BACE1 was discovered to initiate the cleavage of amyloid precursor protein(APP)at theβ-secretase site.Only after this cleavage doesγ-secretase further cleave the BACE1-cleaved C-terminal APP fragment to release Aβ.Hence,blocking BACE1 proteolytic activity will suppress Aβgeneration.Due to the linkage of Aβto the potential cause of AD,extensive discovery and development efforts have been directed towards potent BACE1 inhibitors for AD therapy.With the recent breakthrough in developing brain-penetrable BACE1 inhibitors,targeting amyloid deposition-mediated pathology for AD therapy has now become more practical.This review will summarize various strategies that have successfully led to the discovery of BACE1 drugs,such as MK8931,AZD-3293,JNJ-54861911,E2609 and CNP520.These drugs are currently in clinical trials and their updated states will be discussed.With the promise of reducing Aβgeneration and deposition with no alarming safety concerns,the amyloid cascade hypothesis in AD therapy may finally become validated.展开更多
Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In t...Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In this study,a biomimetic nasal model based on three-dimensional(3D)reconstruction and three-dimensional printing(3DP)technology was developed for visualizing the deposition of drug powders in the nasal cavity.The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females.The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test.The experimental device produced the most satisfactory results with five spray times.Furthermore,particle sizes and spray angles were found to significantly affect the experimental device’s performance and alter drug distribution,respectively.Additionally,mometasone furoate(MF)nasal spray(NS)distribution patterns were investigated in a goat nasal cavity model and three male goat noses,confirming the in vitro and in vivo correlation.In conclusion,the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.展开更多
Peptide-drug conjugates have achieved considerable development and application as a novel strategy for targeted delivery of anticancer drugs. Bioactive peptides induced calcium deposition can irreversibly assist inhib...Peptide-drug conjugates have achieved considerable development and application as a novel strategy for targeted delivery of anticancer drugs. Bioactive peptides induced calcium deposition can irreversibly assist inhibition of tumors. However, active regulation of calcium level through signal transduction of bioactive substances has not been reported yet. In this study, novel neuropeptide-doxorubicin conjugates(NP-DOX) with lysosome-specific acid response were described for neuropeptide Y_1 receptor(Y_1R)-overexpressed triple-negative breast cancer. The delivery mechanism of NP-DOX was clarified that diverse pathways were involved, including intracellular and intercellular transport. Importantly, up-regulation of Y_1 R-mediated intracellular calcium level via second messenger inositol triphosphate was presented in NP-DOX treated MDA-MB-231 cells. In vivo antitumor efficacy demonstrated that NP-DOX showed less organ toxicity and enhanced tumor inhibition benefited from its controlled release and Y_1R-mediated calcium deposition, compared with free DOX. This bioconjugate is a proof-of-concept confirming that neuropeptide-mediated control of signaling responses in neuropeptide-drug conjugates enables great potential for further applications in tumor chemotherapy.展开更多
基金R Yan is supported by the grant(AG025493,MH103942,NS074256 and AG046929)from the National Institutes of Health.
文摘Alzheimer’s disease(AD)is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives.While the etiology of AD remains an enigma,excessive accumulation ofβ-amyloid peptide(Aβ)is widely believed to induce pathological changes and cause dementia in brains of AD patients.BACE1 was discovered to initiate the cleavage of amyloid precursor protein(APP)at theβ-secretase site.Only after this cleavage doesγ-secretase further cleave the BACE1-cleaved C-terminal APP fragment to release Aβ.Hence,blocking BACE1 proteolytic activity will suppress Aβgeneration.Due to the linkage of Aβto the potential cause of AD,extensive discovery and development efforts have been directed towards potent BACE1 inhibitors for AD therapy.With the recent breakthrough in developing brain-penetrable BACE1 inhibitors,targeting amyloid deposition-mediated pathology for AD therapy has now become more practical.This review will summarize various strategies that have successfully led to the discovery of BACE1 drugs,such as MK8931,AZD-3293,JNJ-54861911,E2609 and CNP520.These drugs are currently in clinical trials and their updated states will be discussed.With the promise of reducing Aβgeneration and deposition with no alarming safety concerns,the amyloid cascade hypothesis in AD therapy may finally become validated.
基金This research was funded by the Key Program for International Science and Technology Cooperation Projects of China(No.2020YFE0201700)the Innovation Leading Talents Short-term Program of Jiangxi Province,China(No.1262000102)Shanghai Science and Technology Plan(No.21DZ2260400,China).
文摘Nasal drug delivery efficiency is highly dependent on the position in which the drug is deposited in the nasal cavity.However,no reliable method is currently available to assess its impact on delivery performance.In this study,a biomimetic nasal model based on three-dimensional(3D)reconstruction and three-dimensional printing(3DP)technology was developed for visualizing the deposition of drug powders in the nasal cavity.The results showed significant differences in cavity area and volume and powder distribution in the anterior part of the biomimetic nasal model of Chinese males and females.The nasal cavity model was modified with dimethicone and validated to be suitable for the deposition test.The experimental device produced the most satisfactory results with five spray times.Furthermore,particle sizes and spray angles were found to significantly affect the experimental device’s performance and alter drug distribution,respectively.Additionally,mometasone furoate(MF)nasal spray(NS)distribution patterns were investigated in a goat nasal cavity model and three male goat noses,confirming the in vitro and in vivo correlation.In conclusion,the developed human nasal structure biomimetic device has the potential to be a valuable tool for assessing nasal drug delivery system deposition and distribution.
基金financially supported by the Key R&D Program of Zhejiang Province (No.2020C03110)the National Natural Science Foundation of China (Nos.T2222021, 32011530115,32025021)+1 种基金the Science&Technology Bureau of Ningbo City (Nos.2020Z094, 2021Z072)Excellent Member of Youth Innovation Promotion Association Foundation of CAS (No.Y2021079)。
文摘Peptide-drug conjugates have achieved considerable development and application as a novel strategy for targeted delivery of anticancer drugs. Bioactive peptides induced calcium deposition can irreversibly assist inhibition of tumors. However, active regulation of calcium level through signal transduction of bioactive substances has not been reported yet. In this study, novel neuropeptide-doxorubicin conjugates(NP-DOX) with lysosome-specific acid response were described for neuropeptide Y_1 receptor(Y_1R)-overexpressed triple-negative breast cancer. The delivery mechanism of NP-DOX was clarified that diverse pathways were involved, including intracellular and intercellular transport. Importantly, up-regulation of Y_1 R-mediated intracellular calcium level via second messenger inositol triphosphate was presented in NP-DOX treated MDA-MB-231 cells. In vivo antitumor efficacy demonstrated that NP-DOX showed less organ toxicity and enhanced tumor inhibition benefited from its controlled release and Y_1R-mediated calcium deposition, compared with free DOX. This bioconjugate is a proof-of-concept confirming that neuropeptide-mediated control of signaling responses in neuropeptide-drug conjugates enables great potential for further applications in tumor chemotherapy.