期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
中国远程教育学生流失现状及归因 被引量:7
1
作者 谭明杰 周仲文 +1 位作者 邵培基 李莹 《现代远程教育研究》 CSSCI 2013年第4期67-72,106,共7页
随着计算机和网络的广泛应用,远程教育学生规模不断扩大;与此同时,学生流失问题也日益凸显。较高的学生流失率增加了远程教育机构的生均办学成本,给远程教育机构的社会声誉造成负面影响。因此,研究学生流失规律及影响因素,以降低学生流... 随着计算机和网络的广泛应用,远程教育学生规模不断扩大;与此同时,学生流失问题也日益凸显。较高的学生流失率增加了远程教育机构的生均办学成本,给远程教育机构的社会声誉造成负面影响。因此,研究学生流失规律及影响因素,以降低学生流失率,成为提高远程教学质量很好的切入点。已有研究采用访谈、问卷、描述性统计等方法,对流失率与学习阶段、性别、年龄、专业等的关系进行了探究。按照持续比较法,我国远程教育学生流失的影响因素包括学习者因素、教育机构因素、环境因素3大类和11小类:人口统计学因素、学前准备及技能、学习心理因素、学业表现、专业及课程设计、教育机构支持、交互、工学矛盾、家庭支持、计划外事件和社会支持。降低学生流失率一方面可以基于我国远程教育的现实情景,对学生流失各因素间的相互关系进行研究,在此基础上建立结构化的学生流失模型,对学生流失的决策过程进行清晰的解释;另一方面可以采用数据挖掘方法,利用教务管理系统和学习管理系统数据,建立学生流失预测模型,在流失行为发生前发现潜在的流失学生,以便教育机构可以有针对性的采取挽留措施。 展开更多
关键词 远程教育 学生流失 流失规律 影响因素 流失模型
下载PDF
基于Dropout的改进卷积神经网络模型平均方法 被引量:27
2
作者 程俊华 曾国辉 +1 位作者 鲁敦科 黄勃 《计算机应用》 CSCD 北大核心 2019年第6期1601-1606,共6页
针对深度卷积神经网络(CNN)中的过拟合问题,提出一种基于Dropout改进CNN的模型预测平均方法。首先,训练阶段在池化层引入Dropout,使得池化层单元值具有稀疏性;然后,在测试阶段将训练时池化层Dropout选择单元值的概率与池化区域各单元值... 针对深度卷积神经网络(CNN)中的过拟合问题,提出一种基于Dropout改进CNN的模型预测平均方法。首先,训练阶段在池化层引入Dropout,使得池化层单元值具有稀疏性;然后,在测试阶段将训练时池化层Dropout选择单元值的概率与池化区域各单元值所占概率相乘作为双重概率;最后,将提出的双重概率加权的模型平均方法应用于测试阶段,使得训练阶段池化层Dropout的稀疏效果能够更好地反映到测试阶段池化层上,从而使测试错误率达到与训练的较低错误率相近的结果。在给定大小的网络中所提方法在MNIST和CIFAR-10数据集上的测试错误率分别为0.31%和11.23%。实验结果表明:仅考虑池化层对结果的影响,所提方法与Prob.weighted pooling和Stochastic Pooling方法相比具有更低的错误率,表明池化层Dropout使得模型更具泛化性,并且池化单元值对于模型泛化具有一定帮助,能够更有效避免过拟合。 展开更多
关键词 深度学习 卷积神经网络 dropout正则化 过拟合 模型平均
下载PDF
基于Dropout正则化的汉语框架语义角色识别 被引量:16
3
作者 王瑞波 李济洪 +1 位作者 李国臣 杨耀文 《中文信息学报》 CSCD 北大核心 2017年第1期147-154,共8页
汉语框架语义角色识别是汉语框架语义分析的重要任务之一。该文基于汉语词语、词性等特征的分布式表示,使用一种多特征融合的神经网络结构来构建汉语框架语义角色识别模型。鉴于可用的训练语料规模有限,该文采用了Dropout正则化技术来... 汉语框架语义角色识别是汉语框架语义分析的重要任务之一。该文基于汉语词语、词性等特征的分布式表示,使用一种多特征融合的神经网络结构来构建汉语框架语义角色识别模型。鉴于可用的训练语料规模有限,该文采用了Dropout正则化技术来改进神经网络的训练过程。实验结果表明,Dropout正则化的加入有效地缓解了模型的过拟合现象,使得模型的F值有了近7%的提高。该文进一步优化了学习率以及分布式表示的初始值,最终的汉语框架语义角色识别的F值达到70.54%,较原有的最优结果提升2%左右。 展开更多
关键词 汉语框架网络 语义角色识别 dropout正则化
下载PDF
基于深度学习的复杂储层流体性质测井识别——以车排子油田某井区为例 被引量:10
4
作者 蓝茜茜 张逸伦 康志宏 《科学技术与工程》 北大核心 2020年第29期11923-11930,共8页
测井资料人工解释是目前主流的储层流体性质识别手段,但其应用于复杂储层时存在识别率低、非智能化的缺陷;而近年来发展起来的深度学习方法可以从海量数据中自动提取数据特征,非线性预测能力强。基于目标区块已有大量测井资料和试油结... 测井资料人工解释是目前主流的储层流体性质识别手段,但其应用于复杂储层时存在识别率低、非智能化的缺陷;而近年来发展起来的深度学习方法可以从海量数据中自动提取数据特征,非线性预测能力强。基于目标区块已有大量测井资料和试油结果数据,在应用常规深度神经网络的基础上,提出一种采用混合采样技术、ReLU-Softmax激活函数和Dropout正则化的组合优化新方法。优化后的网络模型对流体识别问题适应性强,且有效避免了样本不均衡、过拟合等问题。将该方法应用于车排子油田低渗油藏某井区,对12口井的水层、干层、油水同层、油层4种流体进行识别,结果显示总体识别准确率达82.7%,单一流体识别率也均较高。且组合优化方法的识别效果明显优于其他方法,尤其使得小样本类——油层和油水同层的识别率得到显著提高。展现了深度学习在复杂储层流体性质识别中良好的应用效果。 展开更多
关键词 流体性质识别 深度学习 混合采样 ReLU-Softmax dropout正则化 车排子油田
下载PDF
基于栈式稀疏降噪自编码网络的辐射源调制识别 被引量:8
5
作者 李东瑾 杨瑞娟 +1 位作者 李晓柏 董睿杰 《电子学报》 EI CAS CSCD 北大核心 2020年第6期1198-1204,共7页
针对辐射源识别中噪声敏感和识别能力不足等问题,提出了一种基于核空间时频特征与栈式稀疏降噪自编码网络的识别系统.通过时频变换、稀疏域降噪和核空间降维投影降低噪声干扰和特征冗余,基于降噪自编码与稀疏自编码思想构建栈式稀疏降... 针对辐射源识别中噪声敏感和识别能力不足等问题,提出了一种基于核空间时频特征与栈式稀疏降噪自编码网络的识别系统.通过时频变换、稀疏域降噪和核空间降维投影降低噪声干扰和特征冗余,基于降噪自编码与稀疏自编码思想构建栈式稀疏降噪自编码识别网络.实验结果表明系统在识别率和时效性上综合性能最优,能够显著降低噪声敏感性,低信噪比环境下适应性较强.当信噪比为-12dB时,系统对8类辐射源信号的整体平均识别率达到96.75%. 展开更多
关键词 辐射源识别 稀疏降噪自编码 时频特征 核映射 批量随机梯度下降法 dropout正则化
下载PDF
基于人脸关键特征提取的表情识别 被引量:6
6
作者 冉瑞生 翁稳稳 +1 位作者 王宁 彭顺顺 《计算机工程》 CAS CSCD 北大核心 2023年第2期254-262,共9页
自然场景下人脸表情由于受遮挡、光照等因素影响,以及表情局部变化细微,导致现有人脸表情识别方法准确率较低。提出一种人脸表情识别的新方法,以ResNet18为主干网络,利用残差连接模块加深网络结构,以提取更多深层次的表情特征。通过引... 自然场景下人脸表情由于受遮挡、光照等因素影响,以及表情局部变化细微,导致现有人脸表情识别方法准确率较低。提出一种人脸表情识别的新方法,以ResNet18为主干网络,利用残差连接模块加深网络结构,以提取更多深层次的表情特征。通过引入裁剪掩码模块,在训练集图像上的某个区域进行掩码,向训练模型中增加遮挡等非线性因素,提升模型在遮挡情形下的鲁棒性。分别从特征图的通道和空间两个维度提取表情的关键特征,并分配更多的权重给表情变化明显的特征图,同时抑制非表情特征。在特征图输出前加入Dropout正则化策略,通过在训练中随机失活部分神经元,达到集成多个网络模型的训练效果,提升模型泛化能力。实验结果表明,与L2-SVMs、IcRL、DLP-CNN等方法相比,该方法有效提高了表情识别准确率,在2个公开表情数据集Fer2013和RAF-DB上的识别准确率分别为74.366%和86.115%。 展开更多
关键词 注意力机制 残差网络 人脸表情识别 裁剪掩码 dropout正则化
下载PDF
Intelligent Recognition Method of Insufficient Fluid Supply of Oil Well Based on Convolutional Neural Network 被引量:1
7
作者 Yanfeng He Zhenlong Wang +2 位作者 Bin Liu Xiang Wang Bingchao Li 《Open Journal of Yangtze Oil and Gas》 2021年第3期116-128,共13页
Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient... Traditional methods for judging the degree of insufficient fluid supply in oil wells have low efficiency and limited accuracy. To address this problem, a method for intelligently identifying the degree of insufficient fluid supply in oil wells based on convolutional neural networks is proposed in this paper. Firstly, 5000 indicator diagrams with insufficient liquid supply were collected from the oilfield site, and a sample set was established after preprocessing;then based on the AlexNet model, combined with the characteristics of the indicator diagram, a convolutional neural network model including 4 layers of convolutional layers, 3 layers of down-pooling layers and 2 layers of fully connected layers is established. The backpropagation, ReLu activation function and dropout regularization method are used to complete the training of the convolutional neural network;finally, the performance of the convolutional neural network under different iteration times and network structure is compared, and the super parameter optimization of the model is completed. It has laid a good foundation for realizing the self-adaptive and intelligent matching of oil well production parameters and formation fluid supply conditions. It has certain application prospects. The results show that the accuracy of training and verification of the method exceeds 98%, which can meet the actual application requirements on site. 展开更多
关键词 Degree of Insufficient Fluid Supply in Oil Wells Indicator Diagram Convolutional Neural Network Alexnet Backpropagation Algorithm ReLu Activation Function dropout regularization
下载PDF
基于机器学习的音频分类 被引量:1
8
作者 熊华煜 余勤 +1 位作者 任品 雒瑞森 《计算机工程与设计》 北大核心 2021年第1期156-160,共5页
为施行有效的音频分类以高效率处理日渐复杂的音频信息,研究采用包含多种神经网络在内的5种机器学习模型,实现多种决策下的音频分类以寻找最优模型,基于分类准确度对各模型分类效果进行评估,在使用正则化方法保证模型泛化能力的条件下,... 为施行有效的音频分类以高效率处理日渐复杂的音频信息,研究采用包含多种神经网络在内的5种机器学习模型,实现多种决策下的音频分类以寻找最优模型,基于分类准确度对各模型分类效果进行评估,在使用正则化方法保证模型泛化能力的条件下,通过比较和实验,挖掘并验证出了相对最优的模型——卷积神经网络音频分类模型及对应参数,为现有音频分类模型的进一步优化提供了参考方向。 展开更多
关键词 多媒体技术 机器学习 音频分类 神经网络 正则化
下载PDF
改进的LeNet-5模型在花卉识别中的应用 被引量:15
9
作者 吴丽娜 王林山 《计算机工程与设计》 北大核心 2020年第3期850-855,共6页
为提高花卉图像的识别率,实现良好的花卉分类效果,提出一类改进型LeNet-5卷积神经网络模型。将原LeNet-5卷积神经网络模型的S4层与C5层之间的连接方式改为全连接,将S2层、S4层的池化操作分别设置为均值池化、最大池化。在此基础上采用... 为提高花卉图像的识别率,实现良好的花卉分类效果,提出一类改进型LeNet-5卷积神经网络模型。将原LeNet-5卷积神经网络模型的S4层与C5层之间的连接方式改为全连接,将S2层、S4层的池化操作分别设置为均值池化、最大池化。在此基础上采用随机梯度下降方法和Dropout防止过度拟合的方法相结合的算法,对Oxford-17花卉数据集进行仿真实验。实验结果表明,改进型LeNet-5卷积神经网络有效且可行,该模型对花卉图像的识别率高达96.5%,与未改进的LeNet-5卷积神经网络模型相比,识别率提高了6.5%。 展开更多
关键词 卷积神经网络 全连接 随机梯度下降 dropout正则化方法 仿真
下载PDF
基于深度对抗丢弃正则化的年龄估计
10
作者 朱昱 樊航 +2 位作者 王鹏 马莞悦 周媛 《电子测量技术》 北大核心 2022年第1期145-152,共8页
成年人面部变化非常缓慢,因此相邻年龄段的成人年龄估计仍是一个挑战。针对该问题,将对抗学习思想引入年龄估计任务,提出了基于深度对抗丢弃正则化的年龄估计模型。通过年龄特征学习器与判别器的对抗训练,提升年龄特征学习器对年龄段特... 成年人面部变化非常缓慢,因此相邻年龄段的成人年龄估计仍是一个挑战。针对该问题,将对抗学习思想引入年龄估计任务,提出了基于深度对抗丢弃正则化的年龄估计模型。通过年龄特征学习器与判别器的对抗训练,提升年龄特征学习器对年龄段特征(特别是对相邻年龄段人脸年龄特征)的学习能力。在3个经典数据集(UTKFace、MORPH和Adience)上的实验显示,所提出的模型将UTKFace数据集的预测正确率由42.8%提升至81.6%,MORPH数据集的准确率由39.8%提升至69.8%,对Adience数据集的预测正确率为63.3%;和其他4个经典模型相比,该模型仅用5层神经网络就达到了比深层神经网络更好的效果,特别中青年年龄段(15~53岁)年龄估计准确率比其他模型平均高出17.5%,说明本文模型对年龄估计任务性能有显著提升,有很好的实用价值。 展开更多
关键词 年龄估计 对抗学习 对抗丢弃正则化 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部