This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression an...This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.展开更多
Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate syst...Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate systematically single-phase pressure drop, and to develop the theory for frictional factor under the roiling condition. Using deionized water as the test fluid, a series of experiments of single-phase flow were conducted in pipe with the inner diameter of 34.5 ram. The test section was horizontally settled on the rolling apparatus, and its regularity was similar to simple harmonic motion. It is found that the pressure drop during rolling motion fluctuate with the change of the rolling period and rolling angle, which is significantly different from fluid motion in a steady state. By the contrast between experiment results and stable-state theory values, existing correlations can not predict present frictional factor very well. Therefore, in the present article, the single-phase frictional factor is correlated with the Reynolds number for rolling motion, and its computated results agree well with experimental data.展开更多
Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have be...Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.展开更多
In this paper, air side heat transfer and pressure drop characteristics of twelve three-row plate finandtube heat exchanger cores of four types of fin configurations have been experimentally investigated.The heat tran...In this paper, air side heat transfer and pressure drop characteristics of twelve three-row plate finandtube heat exchanger cores of four types of fin configurations have been experimentally investigated.The heat transfer and friction factor correlations for'the twelve cores are provided in a wide range ofReynolds number. It is found that in the range of Reynolds number tested, the Nusselt number of theslotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbersof two types of wavy fins are somewhere in between.展开更多
The velocities at given points in the volute chamber,the contracted section and the vertical dropshaft of a discharge tunnel with vortex drop were measured by a small specially designed L-shaped tube,as Laser Doppler ...The velocities at given points in the volute chamber,the contracted section and the vertical dropshaft of a discharge tunnel with vortex drop were measured by a small specially designed L-shaped tube,as Laser Doppler Velocimetry(LDV) or Particle Image Velocimetry(PIV) would not work there due to the special structure of the discharge tunnel with vortex drop.Hydraulic empirical formulas were proposed to predict the velocities and the angles of the velocities made with the vertical direction θ.The theoretical analysis results were in good agreement with experimental data.Therefore,the method proposed in this paper can be used to analyze related characteristics of discharge tunnels with vortex drop.Additionally,different model scales were considered to predict the cavitation characteristics on the wall of a dropshaft in practical engineering.展开更多
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright ba...Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band(BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h-1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored.The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity(GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0?C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred.展开更多
The amplitude of pre-Quaternary sea level drop, H, can be calculated by usingthe formula H = D + To, where To is the original thickness from the top of the tidal deposits onthe reef core to the bottom of the tidal dep...The amplitude of pre-Quaternary sea level drop, H, can be calculated by usingthe formula H = D + To, where To is the original thickness from the top of the tidal deposits onthe reef core to the bottom of the tidal deposits on the reef front, or to the bottom of the ancientmeteoric vadose zone, or to the edge of the mixed-water dolostone zone. The identity and similaritybetween the sea-level drop amplitudes calculated from different reefs far away from each otherindicates that such sea-level changes are eustatic rather than relative changes. Evidence of anend-Permian sea-level drop has been found on the Changxingian (i.e. the end of the Palaeofusulinazone) reefs at Ziyun in South China, including algal laminated deposits, sabkha-related dolostone,desiccation cracks, dissolution collapse breccia. According to calculation based on the meteoricdissolution zone of the reef-core sequence at Ziyun, Guizhou province, the amplitude of thesea-level drop at the end-Permian is about 89.3 m. Calculation via the dolomitized upper part of theChangxingian reef in Lichuan, Hubei Province, yields an 88.9 m amplitude of the sea-level drop atthe end-Permian. Comparison shows that the sea-level drop recorded in the two distantly locatedreefs may be of eustatic type. So the amplitude of the sea level drop of the Tethys Sea at theend-Permian might be at least 89.3 m.展开更多
文摘This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR meta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the lit- erature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.
基金supported by the National Natural Science Foundation of China (Grant No.50376012)supported by the Scientific Research Foundation of Harbin Engineering University (Grant No.HEUFT07066)
文摘Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate systematically single-phase pressure drop, and to develop the theory for frictional factor under the roiling condition. Using deionized water as the test fluid, a series of experiments of single-phase flow were conducted in pipe with the inner diameter of 34.5 ram. The test section was horizontally settled on the rolling apparatus, and its regularity was similar to simple harmonic motion. It is found that the pressure drop during rolling motion fluctuate with the change of the rolling period and rolling angle, which is significantly different from fluid motion in a steady state. By the contrast between experiment results and stable-state theory values, existing correlations can not predict present frictional factor very well. Therefore, in the present article, the single-phase frictional factor is correlated with the Reynolds number for rolling motion, and its computated results agree well with experimental data.
基金primarily supported by the National Key Research and Development Program of China(Grant Nos.2017YFC1501703 and 2018YFC1506404)the National Natural Science Foundation of China(Grant Nos.41875053,41475015 and 41322032)+2 种基金the National Fundamental Research 973 Program of China(Grant Nos.2013CB430101 and2015CB452800)the Open Research Program of the State Key Laboratory of Severe Weatherthe Key Research Development Program of Jiangsu Science and Technology Department(Social Development Program,No.BE2016732)
文摘Dual-polarization(dual-pol)radar can measure additional parameters that provide more microphysical information of precipitation systems than those provided by conventional Doppler radar.The dual-pol parameters have been successfully utilized to investigate precipitation microphysics and improve radar quantitative precipitation estimation(QPE).The recent progress in dual-pol radar research and applications in China is summarized in four aspects.Firstly,the characteristics of several representative dual-pol radars are reviewed.Various approaches have been developed for radar data quality control,including calibration,attenuation correction,calculation of specific differential phase shift,and identification and removal of non-meteorological echoes.Using dual-pol radar measurements,the microphysical characteristics derived from raindrop size distribution retrieval,hydrometeor classification,and QPE is better understood in China.The limited number of studies in China that have sought to use dual-pol radar data to validate the microphysical parameterization and initialization of numerical models and assimilate dual-pol data into numerical models are summarized.The challenges of applying dual-pol data in numerical models and emerging technologies that may make significant impacts on the field of radar meteorology are discussed.
文摘In this paper, air side heat transfer and pressure drop characteristics of twelve three-row plate finandtube heat exchanger cores of four types of fin configurations have been experimentally investigated.The heat transfer and friction factor correlations for'the twelve cores are provided in a wide range ofReynolds number. It is found that in the range of Reynolds number tested, the Nusselt number of theslotted fin surface is the largest and that of the plain plate fin is the lowest while the Nusselt numbersof two types of wavy fins are somewhere in between.
基金supported by the Key National Science and Technology Projects (Grant No. 2008BAB29B04)the National Natural Science Foundation of China (Grant Nos. 50709020,50909067)
文摘The velocities at given points in the volute chamber,the contracted section and the vertical dropshaft of a discharge tunnel with vortex drop were measured by a small specially designed L-shaped tube,as Laser Doppler Velocimetry(LDV) or Particle Image Velocimetry(PIV) would not work there due to the special structure of the discharge tunnel with vortex drop.Hydraulic empirical formulas were proposed to predict the velocities and the angles of the velocities made with the vertical direction θ.The theoretical analysis results were in good agreement with experimental data.Therefore,the method proposed in this paper can be used to analyze related characteristics of discharge tunnels with vortex drop.Additionally,different model scales were considered to predict the cavitation characteristics on the wall of a dropshaft in practical engineering.
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
基金sponsored by the National Natural Science Foundation of China (Grant Nos. 41475028 and 41530427)
文摘Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band(BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h-1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored.The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity(GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0?C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred.
基金financially supported by the National Natural Science Foundation of China(No.40172007)the key project from the Chinese Academy of Sciences(No.K2951-B1-409)the Key Lab of Resources,CAS.
文摘The amplitude of pre-Quaternary sea level drop, H, can be calculated by usingthe formula H = D + To, where To is the original thickness from the top of the tidal deposits onthe reef core to the bottom of the tidal deposits on the reef front, or to the bottom of the ancientmeteoric vadose zone, or to the edge of the mixed-water dolostone zone. The identity and similaritybetween the sea-level drop amplitudes calculated from different reefs far away from each otherindicates that such sea-level changes are eustatic rather than relative changes. Evidence of anend-Permian sea-level drop has been found on the Changxingian (i.e. the end of the Palaeofusulinazone) reefs at Ziyun in South China, including algal laminated deposits, sabkha-related dolostone,desiccation cracks, dissolution collapse breccia. According to calculation based on the meteoricdissolution zone of the reef-core sequence at Ziyun, Guizhou province, the amplitude of thesea-level drop at the end-Permian is about 89.3 m. Calculation via the dolomitized upper part of theChangxingian reef in Lichuan, Hubei Province, yields an 88.9 m amplitude of the sea-level drop atthe end-Permian. Comparison shows that the sea-level drop recorded in the two distantly locatedreefs may be of eustatic type. So the amplitude of the sea level drop of the Tethys Sea at theend-Permian might be at least 89.3 m.