Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure...Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs. Under the assumption that permeability varies exponentially with pressure drop, a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established. By using the regular perturbation method and the boundary element method, the model could be solved. The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle. The type curves were plotted and analyzed by considering the effects of permeability modulus, arbitrary shape and impermeable region.展开更多
文摘Reservoir boundary shape has a great influence on the transient pressure response of oil wells located in arbitrarily shaped reservoirs. Conventional analytical methods can only be used to calculate transient pressure response in regularly shaped reservoirs. Under the assumption that permeability varies exponentially with pressure drop, a mathematical model for well test interpretation of arbitrarily shaped deformable reservoirs was established. By using the regular perturbation method and the boundary element method, the model could be solved. The pressure behavior of wells with wellbore storage and skin effects was obtained by using the Duhamel principle. The type curves were plotted and analyzed by considering the effects of permeability modulus, arbitrary shape and impermeable region.