Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types ...Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the history of vegetation and climate in Lake Qinghai basin. Modern pollen in the lake mainly comes from the nearby vegetation, controlled by the directions and velocity of the wind. The distribution of modern pollen in Lake Qinghai tends to be similar in most part of the lake. The difference of pollen sedimentation process in the lake can be potentially influenced by the focusing function of the lake, river streams, and lake current.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 40599423)National Basic Research Program of China (Grant No. 2004CB720202)the West Light Foundation
文摘Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the history of vegetation and climate in Lake Qinghai basin. Modern pollen in the lake mainly comes from the nearby vegetation, controlled by the directions and velocity of the wind. The distribution of modern pollen in Lake Qinghai tends to be similar in most part of the lake. The difference of pollen sedimentation process in the lake can be potentially influenced by the focusing function of the lake, river streams, and lake current.