期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Three kinds of extraneous factors in Dixon resultants
1
作者 ZHAO ShiZhong FU HongGuang 《Science China Mathematics》 SCIE 2009年第1期160-172,共13页
Dixon resultant is a basic elimination method which has been used widely in the high technology fields of automatic control, robotics, etc. But how to remove extraneous factors in Dixon resultants has been a very diff... Dixon resultant is a basic elimination method which has been used widely in the high technology fields of automatic control, robotics, etc. But how to remove extraneous factors in Dixon resultants has been a very difficult problem. In this paper, we discover some extraneous factors by expressing the Dixon resultant in a linear combination of original polynomial system. Furthermore, it has been proved that the factors mentioned above include three parts which come from Dixon derived polynomials, Dixon matrix and the resulting resultant expression by substituting Dixon derived polynomials respectively. 展开更多
关键词 dixon resultant dixon matrix extraneous factors 00A06 13A50 13P99 68W30
原文传递
构建复杂Dixon矩阵递归算法的改进
2
作者 王颖 刘忠 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第8期96-99,共4页
针对多于5个变元的复杂多项式系统的Dixon矩阵的构建问题,基于递归算法提出了一种改进算法.采用动态规划的思想,自下而上地构建Dixon矩阵,避免了Dixon多项式的重复计算,并给出了使用该算法计算Dixon矩阵的具体实例.该算法与递归算法一样... 针对多于5个变元的复杂多项式系统的Dixon矩阵的构建问题,基于递归算法提出了一种改进算法.采用动态规划的思想,自下而上地构建Dixon矩阵,避免了Dixon多项式的重复计算,并给出了使用该算法计算Dixon矩阵的具体实例.该算法与递归算法一样,可以在同样的计算平台上处理其他方法所不能解决的一些复杂多项式系统求解问题,但与递归算法相比,减少了须要计算的Dixon多项式的数量,提高了计算效率. 展开更多
关键词 式理论 dixon多项式 dixon矩阵 消元法 形式幂级数
原文传递
基于拉格朗日插值的参数曲面隐式化
3
作者 赵若晨 于建平 孙永利 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期119-123,共5页
首先给出了Dixon矩阵的算法,并以此为基础,利用Dixon矩阵以及拉格朗日插值的基本理论,给出了参数曲面隐式化的一种方法。该方法有效克服了用经典结式方法求参数曲面隐式方程的中间膨胀问题。既减少了计算量,又节省了时间和空间,提高了... 首先给出了Dixon矩阵的算法,并以此为基础,利用Dixon矩阵以及拉格朗日插值的基本理论,给出了参数曲面隐式化的一种方法。该方法有效克服了用经典结式方法求参数曲面隐式方程的中间膨胀问题。既减少了计算量,又节省了时间和空间,提高了参数曲面隐式化的速度。最后,通过实例,证明了本文算法的准确性和有效性。 展开更多
关键词 dixon矩阵 LAGRANGE插值 参数曲面隐式化
下载PDF
Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix:A Case Study on Mechanical Application 被引量:1
4
作者 Shang Zhang Seyedmehdi Karimi +1 位作者 Shahaboddin Shamshirband Amir Mosavi 《Computers, Materials & Continua》 SCIE EI 2019年第2期567-583,共17页
In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors vi... In the process of eliminating variables in a symbolic polynomial system,the extraneous factors are referred to the unwanted parameters of resulting polynomial.This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix.An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems.To do so,an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis.Moreover,the monomial multipliers are optimally positioned to multiply each of the polynomials.Furthermore,through practical implementation and considering standard and mechanical examples the efficiency of the method is evaluated. 展开更多
关键词 dixon resultant matrix symbolic polynomial system elimination theory optimization algorithm computational complexity
下载PDF
An extended fast algorithm for constructing the Dixon resultant matrix 被引量:4
5
作者 ZHAO Shizhong FU Hongguang 《Science China Mathematics》 SCIE 2005年第1期131-143,共13页
In recent years,the Dixon resultant matrix has been used widely in the resultant elimination to solve nonlinear polynomial equations and many researchers have studied its efficient algorithms.The recursive algorithm i... In recent years,the Dixon resultant matrix has been used widely in the resultant elimination to solve nonlinear polynomial equations and many researchers have studied its efficient algorithms.The recursive algorithm is a very efficient algorithm,but which deals with the case of three polynomial equations with two variables at most.In this paper,we extend the algorithm to the general case of n+1 polynomial equations in nvariables.The algorithm has been implemented in Maple 9.By testing the random polyno mial equations,the results demonstrate that the efficiency of our program is much better than the previous methods,and it is exciting that the necessary condition for the existence of common intersection points on four general surfaces in which the degree with respect to every variable is not greater than 2 is given out in 48×48 Dixon matrix firstly by our program. 展开更多
关键词 dixon RESULTANT matrix Sylvester RESULTANT matrix truncated formal power series.
原文传递
双变元多项式系统的混合结式矩阵的项公式
6
作者 孙维昆 曾可可 林汉兴 《应用数学》 CSCD 北大核心 2016年第2期451-456,共6页
结式矩阵是消去理论中的重要工具之一,混合Cayley-Sylvester结式矩阵是其中一类结式矩阵.本文从混合结式矩阵的定义出发,对于双变元多项式系统,利用行列式的性质对主要步骤进行简化,避免多项式除法,从而提高整体混合结式的计算效率.
关键词 消去理论 混合结式矩阵 dixon 项公式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部